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The technique developed by Montroll and HesFhas been used to describe the 
discrete scattering of scalar waves from defects on a regular simple cubic 
lattice. The method makes no assumption about the symmetry of the scatterers 
and therefore can be applied to 1nhomogene1t1es of arbitrary shape. The only 
limitation of the technique 1s the maximum number of defects one can use to 
specify the scatterer, which 1n turn 1s determined by limitations 1n 
computation time. 

The multiple scattering model proposed by Foldy and latter extended by 'ax was 
implemented by West and Shleslnger as a means of evaluating the distribution 
of grains In polycrystalllne materials. 

If the materiel consists of grains such that the wavelength 1s much larger 
than the grain size then the density of scatterers probtd by the acoustic wave 
Is unchanged as the frequency Is Increased, provided that on^temalns 1n the 
Raylelgh scattering domain. If one 1s In the scattering domain where the 
wavelength 1s less than or equal to the grain size, then the density of 
scatterers Increases no more rapidly than the square of the linear scale 
(a-squared) rather than as Us cube as 1t would In the usual situation. This 
Implies that the density of scatterers Is a fractal In the stochastic 
scattering domain. Note also that the surface of a grain can have many scales 
and may In part be responsible for the fractal behavior observed 1n the 
phenomenologlcal expression. fcauwovdS» 
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1. ACCOMPLISHMENTS UNDER FA 9620^1-0017 

A. Scattering Theory 

We proposed, under this contract, to apply a new analytic technique to the 

nondestructive evaluation (NDE) of materials. The technique had been 

developed by Montroll and West1 to describe the discrete scattering of scalar 

waves from defects on a regular simple cubic lattice. The method makes no 

assumption about the symmetry of the scatterers and therefore can be applied 

to inhomogeneities of arbitrary shape. The majority of the approaches used in 

the past have had to either truncate the multiple scattering integrals at some 

appropriate order or restrict the investigation to scatterers having a high 

degree os symmetry. We, in LJI-R-83-22SM1) avoid both these limitations by 

characterizing a scatterer by a distribution of N defects and solving the scatter- 

ing prof em for these N defects exactly. The only limitation of the technique is 

the maximum number of defects one can use to specify the scatterer, which in 

turn is determined by limitations in computation time. 

The problem posed by the scattering of a scalar wave from a fixed obstacle 

of known shape and composition is primarily numerical and involves the solution 

of a linear integral equation. The propagation of an ultrasonic wave through a 

homogeneous, isotropic elastic material is described by a scalar wave equation. 

The scattering of such a wave from an imperfection in the solid generates both 

longitudinal and transverse waves, which satisfy linear integral equations with a 

propagation kernel given by a Greens tensor. At present a numerically tractable 

theory for the scattering of an elastic wave from a flaw of arbitrary shape, i.e., 

one not possessing spatial symmetry, does not exist. In nondestructive evalua- 

tion (NDE), where such waves are used as probes to determine the shape, size 

and composition of flaws in materials, the analysis has been restricted to either 

long or short wave approximations. In the former case the Born approximation 

has been used extensively and in the latter a generalization of the diffractive 

geometric optics approximation originally due to Keller has been used. 

In LJ1-R-83-229 we limited our discussion to scalar waves scattering from 

inhomogeneities and examined properties of the scattered wavefleld in the far 

field region. Among the scattering configurations we examined were line 

scatterers of finite length, i.e., hairline cracks, including the effects of ends in 

the crack and cracks of finite lateral extent also rectangular patches of scatter- 

ers. The exact scattered wavefleld from such theoretically repelling,, but physi- 

cally interesting objects has not been calculated previously. 
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We reviewed the mathematical formalism for the scattering of scalar waves 

from defects on a simple cubic lattice. The lattice was chosen for computational 

convenience and is not to be confused with the crystal lattice of the material. A 

real metal such as iron consists of an agglomeration of crystals having a charac- 

teristic dimension of 0.025 cm with arbitrary shapes and orientations. Each of 

these crystals is called a grain and there exists a distribution of grain sizes in 

such polycrystalline materials. The distribution of grain sizes determines the 

fracture micro-mechanics of the elastic material and can dominate such effects 

as crack formation and propagation as well as the attenuation of the ultrasonic 

waves. Under this contract we were not concerned with the generation or evolu- 

tion of cracks, but rather with their detection. Thus we felt that the use of our 

computational lattice was justified for this preliminary investigation of S-wave 

scattering in NDE.'1' We showed that in the solution for the scattering of a wave 

from N defects no assumptions are made about the relative positioning of the 

defects. An extended scattering object is therefore represented by a distribu- 

tion of N such defects. The Montroll-West model solution is not an exact 

representation of the scattering from a flaw, because the flaw is represented by 

only N defects. However, the ratio of determinant is the exact scattering solu- 

tion to the N point representation of the flaw. The exact nature of the model 

enables one to exploit the method to determine the effects of interference and 

resonance in the specular reflection from crack.*;. 

We also discussed the physical interpretation of the form of the solution to 

the N defect scattering problem. One can relate the terms in the expansion of 

the determinants to scattering diagrams and associate elements with particular 

multiple scattering effects. In this way various effects can be systematically 

suppressed by using approximations to the expanded form of the determinants. 

It was suggested that this technique can be used to check other approximation 

methods in situations where exact analytic or numerical calculations cannot be 

made using more standard methods. ^ 

The extension of the above theory to the scattering of elastic waves in a 

material was made in LJI-R-82-174J2] A spatially discrete lattice model of the 

scattering was developed anu the discrete lattice Greens tensor that go over to 

the proper continuum form in the appropriate limit were constructed. The 

scattering from inhomogeneities on the lattice using these lattice Greens ten- 

sors enabled us to write the exact scattered wave field as the ratio of deter- 

minants.  The elements of the determinants are all known quantities, i.e., they 
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are the strength of the inhomogeneities at the N scattering points. The formal 

scattered field from a single density discontinuity was evaluated in detail and 

shown  to  give   for  the   components  of  the  scattered  wave   displacement 

n(0=r,°(0 + t?,(0: 

The amplitude of the longitudinal (compression) components of the scattered 

wave are 

and the amplitudes of the transverse (shear) components of the scattered wave 

are 

*M - Z^tflh*-*''1 W'*i 

Here 6p(l i)  is the mass density change from the ambient value p° located at 

lattice point  l\,la is the unit vector in the a direction, k,   is the shear wave 

number determined by the shear speed V,, i.e., kt-Vt/u; kc  is the compression 

wave number and Dg(li) is the scattering determinant^ in the direction ka. 

B. The fractal Dimension of Ultrasonic Scatterers 

Nondestructive methods, in particular the measurement of elastic waves, 

have become increasingly important in determining the microstructure of many 

materials in recent years. Material properties such as the distribution of grain 

sizes in polycrystalling materials, the degree of homogeneity, the existence of 

macroscopic cracks, inclusions, twin boundaries, dislocations, etc., all affect 

fracture micromechanisms and fracture control technology. The basis of the 

ultrasonic approach is the observation that the amplitude of low-frequency 

(long-wavelength) ultrasonic waves (of known amplitude and direction) are 

exponentially attenuated with distance, i.e. the wave intensity decays as 

exp[-a(/ )z ], where z is the line-of-sight distance from the source and a(f) is 

a frequency dependent attenuation factor. 
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The standard theories of wave attenuation partition a(/) into two parts; the 

absorption attenuation coefficient aB(/) and the scattering attenuation 

coefficient as(f). The absorption of energy from the ultrasonic wave arises 

from dislocation damping as well as magneto-elastic and thermo-elastic hys- 

teresis and leads to the coefficient ot8(/) = Af. The quantity A may itself be a 

function of frequency over a large frequency range depending on the material. 

The discontinuity in acoustic impedance occurring at grain boundaries and 

defect sites leads to elastic scattering. For a polycrystalling material of average 

grain size D an ultrasonic wave of wavelength X and frequency / will have the 

scattering attenuation coefficient: for X»D (Rayleigh scattering domain) 

a,(/) = 5i03/4> for X^Z? (stochastic scattering domain) a$(f) = SzDfz; and for 

X «2? (diffusive domain a, = Sa/ D) where Sx, 5& and S3 are related to the elas- 

tic moduli and the longitudinal and transverse sound speeds in a single crystal. 

Experimental data is fitted by these equation and the characteristic value of D 

is inferred. 

In typical metals one encounters a range of grain sizes so that neither the 

Rayleigh nor stochastic scattering limits are appropriate. Instead both types of 

scattering are simultaneously present. In addition the absorption parameter A 

may be frequency dependent. Thus none of the above attenuation coefficients 

are used in practice, instead the phenomenological expression 

«(/) = Bf» 

has been adopted, where B and ß are frequency independent constants. It is 

expected, however, that variations in the microstructure of the material will 

lead to variations in B and fj,, so that these parameters can be expressed in 

terms of certain structural properties of the material. We showed in LJI-R-8-"- 

276^ that the parameter p is a measure of the density of scatterers in the 

material. 

In West and Shlesinger (1984)^ we implemented the multiple scattering 

model proposed by Foldy and latter extended by Lax, wherein the wave number 

of a wave emerging from a region containing a density of scatterers p is 

jfcZ = k§ + 4npf(k)   . 

The function f (k) is the forward scattering amplitude of a single scatter and is 

complex and fc0 is the incident wave number of the acoustic wave. In Reference 
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[4] we approximated the wave number ifc by the relation 

*=fc0 + 2p/(*0)/fco + i2pIm/(*0)/ife0. Then through the use of the optical 

theorem relating the total cross section of the scatterer to the imaginary part 

of the scattering amplitude, i.e., a< = Anlmf (k 0)/ A: 0. we obtained 

k=k0 + 2pRe/(fc0)/*o + ipff«/2TT. Thus the attenuation coefficient a(f) 

= 21m(fc), with V = ot/4n is 

indicating that the correlation among individual scatterers is negligible in this 

approximation. The scattering cross section, 5 has the power-law frequency 

dependence /• where s =0,2,4 from the earlier theories cf the frequency 

dependence of the attenuation coefficient. 

To determine the total frequency dependence of o(/) we utilize the experi- 

mental observation that a high frequency elastic wave interacts with more 

scatterers than does a low frequency wave. Therefore the density of scatterers 

experienced by the incident wave is frequency dependent, i.e., p~p(f). A wave 

of frequency f \, will be scattered by N\(=piV) defects (V is the volume of the 

sample and px , the density probed by the frequency / j) and a wave of frequency 

fz will be scattered from #2 defects. Thus if /2</1 then Pz<Pi- For two real 

constants a and b we write 

p(/i) = M/2) = M/i/a) with 0.6,>1 

which has the scaling solution 

p(f) = const. /**/>»    . 

The exponent lno/lna is reminiscent of a fractal dimension. Fractals are 

geometric objects having structure on an infinite number of scales. As an exam- 

ple consider a three dimensional distribution of mass points such that the quan- 

tity of mass M(r) contained in a sphere of radius R increases with distance as 

M(R)aRF, F^3. The case F=3 is the familiar situation for a uniform distribu- 

tion of mass points. However, a self-similar distribution of mass points is 

described by a value of F less than three. In the usual case, when the mass is 

within a sphere of radius r and we have no information on scales below r, then 

the mass is assumed to have a uniform distribution. If we now examine the 

sphere on a finer scale, r' = r/a say, we discover that what we had considered 

to be a single sphere to actually consist of 6  smaller sphere each of radius r/ a. 
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If this process of increasing the resolution is continued a.u infinitum we arrive 

at the expression (11) for the mass distribution of F=lnb/\na. The quantity F 

is called the fractal dimension.'3'^ 

The attenuation coefficient can now be written as cx(/)=p(/)5(/ )=/7/M 

where B and ß are constants and ß is given by 

jtz = s + lnölna   . 

If the material consists of grains such that X»D then the density of 

scatterers probed by the acoustic wave is unchanged as the frequency is 

increased, provided that we remain in the Rayleigh scattering domain. In this 

case 27=1 so that /x=s=4. In practice the Rayleigh domain sets in at about 

X~10Z3. If we are in the scattering domain \^D then S=2 in (11) and experi- 

mentally ln6/lnos2, i.e., 6^oz. Thus the density of scatterers increases no 

more rapidly than the square of the linear scale (a2) rather than as its cube as 

it would in the usual situation. This result implies that the density of scatterers 

is a fractal in the stochastic scattering domain. Note also that the surface of a 

grain can have many scales and may in part be responsible for the fractal 

behavior observed ii» the phenomenological expression. 
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2. WORKSHOP ON "QUANTITATIVE PREDICTIONS USING NDE' 

We also proposed under this contract to bring together some of the top 

experimentalists and theoreticians in NDB to critique the state of the art in 

their respective specialties. This was done December 1 and 2, 19B3 at the La 

Jolla Institute at a workshop on: "Quantitative Predictions Using NDE." The fol- 

lowing are the abstracts of the talks presented at the workshop, in their order of 

presentation: 

SUCCESSES AND FAILURES OF NUMERICAL METHODS FOR 
ELASTIC WAVE SCATTERING PROBLEMS 

Vasundara V. Varadan 

Ten years ago, with increased interest in NDE, came the realization that 
techniques available then for solving elastic wave scattering problems wtre woe- 
fully inadequate. Reliable results were not available even for spheres and 
cylinders, let alone for more interesting creatures like cracks. Several numeri- 
cal methods were developed, as also asymptotic methods for the low- and high- 
frequency methods such as the Born Approximation. Numerical methods such 
as the T-matrix, MOOT and FEEM, BIE, etc., have been applied to several prob- 
lems of interest in NDE with varying degrees of success. This talk will focus on 
the successes and failures of such methods as applied to NDE and future scope 
of such methods in the context of NDE. 

SOME ULTRASONIC EXPERIMENTS Hi MATERIALS CHARACTERIZATION 

Laszlo Adler 

Selected topics to cover recent experimental ultrasonic techniques to 
evaluate materials will be discussed. Problems to be addressed: scattering from 
inhomogeneities, in the bulk and outer surface, effect of anisotropy of the 
materials on wave propagation, and correlation between ultrasonic measure- 
ments and fracture mechanics. 

NEW DEVELOPMENTS IN NONDESTRUCTIVE MEASUREMENTS OF 
BULK RESIDUAL STRESSES 

Kamel Salama 

Only in the case of surface stresses in components made of crystalline 
materials can nondestructive evaluation of stresses be performed by x-ray 
methods. Although considerably improved in the last decade, these methods 
still suffer from serious problems which severely restrict their applications. 
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Ultrasonic methods appear to hold the best promise in the nondestructive meas- 
— urements of bulk stresses in both crystalline and non-crystalline materials. 

These methods are believed to utilize the anharmonic nature of the crystal lat- 
tice, where the stress is directly related to the coefficients of higher-order 
terms in the strain energy function. The exact mechanism in each of the 
methods, however, has not yet been established. 

In this presentation, new developments in ultrasonic methods to measure 
• residual stresses will be reviewed along with their limitations and potential appli- 

cations. Also to be discussed, are some of the major theoretical advancements 
which have been achieved in the last decade. 

SPECULAR REFlECnON BY UNCOOPERATIVE CRACKS* 

J. D. Achenbach 

The failure processes that result in a crack generally produce rough crack 
faces. Once crack opening has taken place, and the crack faces have undergone 
the slightest relative sliding displacement, the crack will never completely close 

$ again due to incompatibility of the rough crack faces. Under subsequent loading 
conditions, the faces of the crack generally are not free of surface tractions, as 
is assumed for a perfect mathematical crack, nor will there be perfect contact 
between the crack faces. Unless the crack faces are completely separated, a 
complicated interaction between the crack faces is to be expected, which will be 
different for opening and closing of the crack on the one hand, and relative slid- 
ing of the crack faces on the other. 

The effects of interaction between contacting crack faces are of particular 
interest in studies of crack detection and crack characterization by the use of 
the specular reflection and scattering of ultrasonic waves. The idealized model 
of a perfect mathematical crack acts as a perfect screen for reflection and 

• scattering. Scattering results for the perfect mathematical crack-model are 
/alid for a real crack if the amplitude of the incident wave is smaller than the 
average crack-opening displacement prior to wave incidence, and if the 
wavelength is much larger than a characteristic length of the roughness the 
crack faces. 

&2 A crack with interacting crack faces may be a poor reflector, and thus 
difficult to detect and to characterize. In this discussion, we investigate the loss 
of specular reflection due to transmission across the crack faces by nonlinear 
crack-face interactions. The crack is represented by a flaw plane of traction 
continuity (the tractions may vanish) but possible displacement discontinuity. 
The interaction between the crack faces is described by nonlinear relations 

C across the flaw plane between averaged tractions and averaged displacement 
discontinuities and their derivatives. 

The emphasis in the present paper is on cracks that are lightly closed, and 
that may experience separation of the crack faces as well as further closure. 
Since the resistance to crack closure is very different from the resistance to 

Ä crack opening, the problem is inherently nonlinear. If the crack should remain 

•The authors of the talks indicated by an asterisk are included in the Appendix so as to pro- 
vide the critique of NDE in their respective fields. 
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closed at all times, a local perturbation about the closed state can be used to 
yield a linear problem statement. The postulated nonlinear flaw plane relations 
used in the present work contain a number of parameters which must be deter- 
mined experimentally. 

Time of preparation permitting, we will also present some preliminary 
results on reflection and transmission of incident waves by gratings of small 
cracks. 

ANALYSIS OF MANY-DEFECT SYSTEMS 

J. M. Richardson 

In the general problem of quantitative NDE, the majority of past approaches 
are based upon tne questionable assumption that the dominant defect or flaw 
(or at least a tractably small set of significant defects) has been identified 
before the beginning of the main body of the analysis. Thir concept, in ",s most 
simplistic form, is fundamental to most (but not all) treatments of probabilistic 
failure prediction and accept/reject optimization. Also, this concept, in a less 
simplistic form, underlies practically all signal processing approaches in the 
interpretation of ND measurements in the context of detection and flaw charac- 
terization. It is frequently assumed that a single significant, or partially 
significant, defect influences one (and only one) set of measurements. These 
oversimplifications and associated logical tangles are obviated by a more 
comprehensive approach to defect characterization and probabilistic failure 
prediction in which it is assumed in the pertinent stochastic models that the 
various significant types of defects occur in all possible numbers. It is con- 
venient to use a specification of the many-defect state in terms of occupation 
numbers associated with small cells in single-defect state-space. Several 
approximate approaches to the analysis of such systems have been developed 
using methodologies derived from classical statistical mechanics. These results 
will be described with emphasis on limiting cases. The relation of these results 
to several crucial problems (e.g., retirement for cause, machining damage in 
ceramics, etc.) will be discussed. 

ANALYSIS AND SYNTHESIS OF OPTIMIZED EDDY CURRENT PROBES* 

B. A. Auld 

The aim of this presentation is to give a coherent presentation of eddy 
current probe design, with emphasis on task-oriented choices of probe 
geometry. Flaw detection anu sizing optimization will be discussed with respect 
to detection sensitivity and accuracy of inversion, taking probe geometry and 
operating frequency as design parameters. The theoretical base for these pro- 
cedures will be presented, together with recent experimental comparisons of 
theory and experiment - including measurements of the probe field distributions 
and methods for utilizing these measurements in predicting probe performance. 
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ELASTIC WAVE INVERSE SCATTERING THEORY* 

James H. Rose 

The use of ultrasound to characterize flaws (size, shape, orientation and 
material properties) in structural materials is the topic of this talk. The prob- 
lem of characterizing isolated flaws with sharp boundaries and simple shapes in 
a homogeneous, essentially isotropic background has been systematically 
addressed over the last several years. Theoretical inverse scattering methods 
have been proposed based on the long wavelength, the short wavelength and the 
weak scattering limit (the inverse Born approximation). These theories have 
been tested experimentally and good agreement has been obtained. A brief 
summary of these developments and their physical bases will be given. 

Then the talk will turn to the problem of characterizing flaws in parts with 
complex geometries and flaws which lie near surfaces. Here the recent experi- 
ments of Hsu et al. (l) and the measurement model of Thompson and Gray (2) 
will be emphasized. 

Finally, various unsolved problems will be introduced and the possible 
direction of future work in the field will be discussed. Solutions are needed for 
more complicated flaws in a simple medium. For example, the characterization 
of multiple flaws (porosity) is an outstanding problem as is the characterization 
of complicated, bifurcated creaks. Secondly, the characterization of simple 
flaws in complicated media is needed (e.g., delaminations in composite struc- 
ture). Finally, a brief mention will be made of the need to develop a suitable 
inverse scattering theory for ultrasonic surface waves. 

1. D.K. Hsu, J.H. Rose and D.O. Thompson, J. Nondestructive Evaluation, in 
press. 

2. R.B. Thompson and T.A. Gray, JASA 74, 1279 (1983). 
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Talks presented at the Workshop on: Quantitative Predictions Using NDE 
held at the La Jolla Institute. December 1-2. 1983. 
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SOME ULTRASONIC EXPERIMENTS 

IN MATERIAL CHARACTERIZATION 

Laszlo Adler 
Department of Welding Engineering 

The Ohio State University 
Columbus, OH 43210 

INTRODUCTION 

Recent developments of materials characterization by ultrasonic 
waves is summarized by presenting a systematic approach to disconti- 
nuity analysis. Fig. 1 presents a systematic approach to ultrasonic 
evaluation of material structures which may be a weld or a joint, for 
example: 

• Locate all flaws 
• Characterize each flaw (determine size, shape, orientation and 
composition) 

• Characterize the material (determine the elastic properties, 
grain size, surface roughness, etc.) 

• Evaluate the seriousness of the flaws' presence (using frac- 
ture mechanics techniques). 

In order to determine the presence (or absence) or weld discon- 
tinuities, an ultrasonic image is produced. Defects will be deline- 
ated as areas of increased ultrasonic-echo return. For flaws large 
compared with the beam dimensions, the ultrasonic image shows the 
extent of the defect. Flaws on the order of and smaller than the 
ultrasonic wavelength scatter the incident sound beam. Some of this 
energy returns to the transducer and appears on the image as a weakly 
scattering region in the material. Regions such as these are flagged 
for later investigation. 

Next, the characteristics of the weld metal are measured. The 
grain structure and roughness of the ultrasonic beam entrance surface 
will have an effect on all subsequent measurements, and so must be 
determined.  In addition, the mechanical properties of the material 
surrounding any flaws will profoundly affect the strength of the 
weld. Also, regions of the weld containing dense porosity or clouds 
of delusions will lower weld strength. Determinations of the con- 
centration and size distribution of voids or inclusions should per- 
mit calculations of estimated weld mechanical properties. 

One now returns to the suspect regions in the welded structure, 
namely areas of increased echo return in the ultrasonic image. A 
broadband ultrasonic wave is directed toward the suspect region and 
the backscattered signal is the», processed to obtain a magnitude 
spectrum (amplitude versus frequency). If the speccrum shows deep 
and periodic modulation, the suspect region contains a planar dis- 
continuity (e.g. crack). If, however, the spectrum is relatively 
smooth, the flaw is volumetric (e.g. pore). Characterization of the 
defect requires further signal processing. Discrimination of planar 
from volumetric discontinuities permits tha appropriate processing 
algorithm to be selected. 



■E^TT!W,5rK? 

Ultrasonic spectroscopy (using cepstral Analysis) is utilized 
for determining the size of crack-like flaws. Jpon processing, the 
distance (along the ultrasonic beau path) is calculated which sepa- 
rates the near and far edges of the flaw. Interrogation of the 
defect from a number of angles may be used to obtain the flaw's size 
and shape. 

Volumetric defects are characterized by "Born inversion" pro- 
cessing. This algorithm returns both a line-of-slght estimate of 
flaw radius and the cross-sectional area of the flaw (along the 
ultrasonic beam path). "Observation" of the defect at a number, of 
"look angles" discloses its shape and dimensions. 

Once all flaws are characterized, data tabulating: 
• Coordinates of all flaws 
• Shape and size of all defects 
• Material elastic properties (Young's and shear moduli, 
Poisson's ratio) 

• RMS surface roughness 
• Concentration and size distribution for areas containing 

clouds, of porosity, or inclusions 
can be output for evaluation using fracture mechanics techniques. 

Weld Discontinuity Analysis System 

Imaging 
Mapping of Large Flows and Location of Suspect Regions 

Material Characterization 
Determine Mircostructure, Porosity ond Surfoce Roughness 

Investigate Suspect Regions 
Use Broodbond Bockscattering Technique 

tea 
Plonor Discontinuity 

Ultrasonic Spectroscopy 
IO>ko>l 

Determine the Distance 
Separating the Edges of the Flow 

'0> 
Volumetric Discontinuity 

Born Inversion 
25>ko>0.5 

Determine the Flow 
Size ond Shape 

Fig. 1.  Systematic Procedure for Ultrasonic Nondestructive Evaluation 
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DESCRIPTION OF SYSTEM ELEMENTS 

IMAGING 

Tne purpose of ultrasonic imaging is to locate regions in the 
weld which contain flaws. A focused ultrasonic beam is directed 
toward the weld. Changes in material elastic properties or density 
will cause reflection and scattering of the incident beam. A por- 
tion of this echo energy is intercepted by the receiving transducer. 
The receiver output is recorded with the spatial coordinates of the 
scattering region (Fig. 2). If the entire volume of the weld is 
scanned one builds up a 3-dimensional map of echo junplitude versus 
position. 

Fig. 2. Assignment of Coordinates to a Weld. 

Display Modes 
Display of echo information is normally presented one plane at 

a time. The image is termed a C-scan (echo amplitude at constant 
depth) if the image plane is parallel to the sample surface (x-y 
plane). It is a B-scan (display brightness indicates echo amplitude) 
if any other plane (e.g. x-z, y-z or oblique) is presented. It is 
also possible to display the echo strength as a brightness-modulated 
three-dimensional isometric presentation (Fig. 3). Echo amplitude 
is shown as display height as a function of two orthogonal spatial 
coordinates.  Because of the ease in implementing this isometric dis- 
play format, it was chosen for all our B- and C-scans. 

Image Optimization 
The scattering amplitude measured for a particular element in 

the weld is dependent on 
• the ultrasonic wave mode (longitudinal, shear, surface wave) 
• the frequency of the incident wave 
• the incident angle, and 
• the spatial distribution of the incident beam. 

Each of these factors may be adjusted such that flaw detectibility 
is optimized. Analytical, as well as, experimental work is needed 
in this area. 
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Fig. 3.  B-Scan Ultrasonic linage of a Fatigue Crack (a).  The Rayleigh 
surface waves used (b) to investigate the crackvere generated by the 
wedge method. 

Image Processing 
It is possible to accentuate the presence of flaws in an ultra- 

sonic image by postprocessing. A method, gradient processing, for 
enhancing edges in an image is introduced here. Let the echo ampli- 
tude as a function of spatial position be represented by f(x,z).[B- 
scan display mode]. Then the gradient is defined as the vector 
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The gradient vector points in the direction of the maximum rate of 
change of f (x,z) and its magnitude gives the maximum rate of change 
in f(x,z) per unit distance in the direction of G. For manipulation 
of the digital image, the magnitude of the gradient is approximated 

by 

G[f(x,z)] « |f(x,z) - f(x+l,z)| + |f(x,z) - f(x,z+l)|.       (2) 

The gradient of the ultrasonic image is displayed if the gradi- 
ent is above a threshold value.    If the gradient is below threshold 
(presumably the case for pixels representing unflawed regions in the 
weld)  the image pixel is set to zero.    Flaws in the processed image 
stand out more clearly  (Fig.  4b)  than in the original ultrasonic 
image (Fig.  4a).    Research is needed for adaptive threshold setting, 
other methods of image processing and automated flaw recognition 
schemes. 

6> 

Fig. <♦ Ultrasonic B-Scan Images of a Specimen containing Multiple 
Defects. Image before (a) and after (b) gradient processing. 
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MATERIALS CHARACTERIZATION 
The tneehanical properties of the material in which a flaw is 

embedded may be as important as defect size in determining strength. 
Material characteristics which are of importance are listed in Table 
I. It is possible to nondestructively determine many of these pro- 
perties from ultrasonic velocity and attenuation measurements. Both 
analytical and experimental studies have been made to determine how 
frequency-dependent velocity and attenuation measurements may be 
used to infer the concentration and size of pores occurring in dense 
clouds. 

Inhomogeneities (such as pores and inclusions) weaken the struc- 
tural components in which they occur. It is important to nondestruc- 
tively determine the size distribution and concentration of pores or 
inclusions. A multiple scattering theory was developed for treating 
wave propagation through inhoroopeneous materials Matrix and second 
phase elastic properties inclusion concentration and size distribu- 
tion are used as input. Dispersion and frequency-dependent attenu- 
ation are calculated using theory. 

Table 1 

MATERIAL PROPERTIES 

Tensile Modulus 
Shear Modulus 
Tensile Strength 
Shear Strength 
Bond Strength 
Hardness 
Surface Finish 
Impace Strength 
Fracture Toughness 
Anlsotropy 
Microstrueture 
Grain Size 
Porosity, Void Concentration 
Phase Composition 
Hardening Depth 
Residual Stress 
Heat Treatment Profile 
Fatigue Damage 

Ultrasonic Wave Propagation in Cast Iron-Graphite Composite 

The same multiple scattering treatment applied to porous media 
may also be used to analyze the problem of an ultrasonic wave tra- 
versing a material containing clouds of solid inclusions.  Cast iron 
containing compact flake and nodular graphite, and also specimens of 
gray iron is studied. Because the graphite in nodular iron appears 
mostly as spheres, it was thought the multiple scattering theory 
could be used with only minor changes to include the elastic proper- 
ties of the graphite nodules. 

The properties of the cast iron matrix were estimated from ul- 
trasonic velocity measurements on a sample of 1045 steel. This type 
of steel was chosen because it has approximately the same relative 
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percentages of ferrite and pearlite. Table II lists pertinent mater- 
ial properties for the matrix (iron) and inclusions (graphite nod- 
ules). Elastic moduli were calculated from the velocities. 

Table II. Properties of the Constituent* In Nodular Cast Iron. 

Velocities (km/sec) 

Material Longitudinal    Transverse    Density (g/cia ) 

Iron (1045 steel)     5.8 3.1 7.2 

graphite 3.2 l.S 2.2 

Values for the matrix material, iron, and the inclusions, graphite 
spheres were input to the multiple scattering theory to determine the 
phase velocity and attenuation as a function of frequency. Narrow- 
band and broadband ultrasonic experiments were performed on carefully 
prepared specimens of cast iron. Fig. 5 plots theoretically- 
determined attenuation and experimental measurements. The shape of 
the curves are identical; however, there is an offset. We ascribe 
this to Incorrect assumptions of the wave speed in the graphite and 
to the fact we assumed a uniform size of graphite nodules, when there 
is actually a distribution of Elses. 

Surface Roughness 

The condition of the surface through which ultrasonic beam enters 
the Toaterial can have a profound effect on the frequency content of 
the pulse, the angle of the refracted energy and on the spatial dis- 
tribution of the beam in the solid. Both imaging and defect charac- 
terization techniques will be affected by the surface finish on the 
weld under evaluation. Much of the unreliability of contact ultra- 
sonic testing arises from multipath effects and trapped air due to 
roughness on the sample surface. 

We have begun studies aimed at nondestructively inferring param- 
eters describing surface roughness (rms roughness and correlation 
length for randomly-rough surfaces and periodicity and peak to valley 
height for periodic surfaces).  Surface roughness may be measured 
ultrasonically from the angular or frequency dependence of wave scat- 
tering. 

Ultrasonic measurement of rms roughness (h) may be carried out in 
the following manner. An ultrasonic transducer, operated in the 
pulse-echo mode, is used to record the intensity <I> of backscattered 
ultrascnic compressional waves.  The experiment is repeated for a 
smooth-surfaced sample of the same material (giving I ). 

If low frequencies are used, the backscattered intensity is ap- 
proximated as 

<i>. i e-"2h2. -■ <« 
0 . — 

where k is the wave number of the ultrasound in the liquid bath.  The 
roughness, h, may be estimated from 

«/ AdB \ 

V-17.37k2j (4) 
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where,AdB is the relative amplitude of the waves backseattered from 
the rough surface compared to that of the smooth surface. The advan- 
tages of the ultrasonic measurement of surface roughness are 

»•. it is nondestructive 
* determinations may be made rapidly 
• whereas mechanical profilometers measure roughness only along 
the line of stylus traverse, the ultrasonic method averages 
over the entire insonified e^ea (be it small or large). 
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Fig.  5.    Attenuation of Ultrasonic Waves in Nodular Cast Iron as a 
Function of Frequency  (o - multiple scattering theory and x - experi- 
mental) . 

DEFECT CHARACTERIZATION 

Ultrasonic images produced in the first stage of our evaluation 
disclosed the extent of large flaws and identified weakly scattering 
regions as areas potentially containing smaller defects.     For a frac- 
ture mechanics evaluation,  the size and shape of these small discon- 
tinuities is required  (in addition to their location,  as determined 
from the ultrasonic image).    Flaw characteristics may be determined 
from ultrasonic scattering data; however,   the defect must first be 
classified as volumetric   (3-dlmensional,  e.g.   pore or inclusion) or 
planar  (2-dimensional,  e.g.  crack-like). 

The classification of defect type is carried out by identifying 
discriminatory features  in the backscattering frequency spectrum. 
The procedure below is followed. 
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1) A broadband ultrasonic pulse is directed toward the suspect 
region in the weld. 

2) The backscattered signal from the region is sampled, digi- 
tized and stored in computer memory. 

3) A system normalization signal is acquired by sending the in- 
cident pulse through an unflawed region in the material 
toward a perfect reflector (polished solid-air surface). 

A) Perturbing effects of the data acquisition system and 
material intervening between the ultrasonic transducer and 
the defect are removed by deconvolving the defect signal by 
the signal from the reference reflector. 

5) The magnitude spectrum is displayed. 
• The defect is classified as planar if the spectrum has 

deep, periodic modulation (explanation given later). 
• The defect is classified as a volumetric flaw if the spec- 
trum is relatively smooth. 

6) If there is some ambiguity in classifying the defect type 
(5), then the suspect region is interrogated from a number of 
angles. 
• A planar discontinuity will return large backscattering 
signals for orientations in which the incident ultrasonic 
beam is directed normal to the plane of the flaw. 

• Amplitude of signals returned from a volumetric disconti- 
nuity depend less strongly on angle. 

7) If the discontinuicy is planar, an inversion scheme termed 
ultrasonic spectroscopy is followed. 

8) If a volumetric flaw is to be characterized, the Born inver- 
sion algorithm is utilized. 

The Born inversion procedure is summarized here. 

Born Inversion 

As an ultrasonic wave strikes a volumetric flaw (Fig. 6), the 
cross-sectional area encountered increases as the wave propagates. 
When the wave is just incident on the defect (time, t.) the area en- 
countered is minimal. As the wave moves onward (time t„, then t-, 
. . .) they are encountered increases (A_, A«, . . .). The cross- 

sectional of. tin flaw rsicichea a maximum when the wavefront reaches 
the center of the flaw. The area encountered decreases thereafter. 
The Born inversion algorithm returns the area function A. versus t.. 

From this, a line-of-sight estimate of flaw radius may be calculated. 

Ultrasonic Spectroscopy 

Ultrasonic spectroscopy applied to defect characterization was 
pioneered by Adler, et. al. »^»^ The fundamental ideas underlying 
the technique are summarized here (details may be found in the book 
by Fitting and Adler, *). 
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Fig. 6. Plane Wave Encountering a Scatterer. 
a) Position of wavefront at times t,. 
b) Area of the scatterer encountered at times t., and 
c) Area function. 

Ja ' 

REFLECTOR 

Fig. 7. Ultrasonic Waves Scattered from the Edges of a Planar Reflec- 
tor. 

An ultrasonic wave directed toward a planar discontinuity will 
be in part specularly reflected from it, but also scattering will 
occur from the near and far edges (flashpoints, [5]) of the flaw (Fig, 
7).  If the echo is transformed to the frequency domain (via the Fast 
Fourier Transform, FFT) the time spacing of the signals may be deter- 
mined. 

Consider a single signal y(t) which has a spectrum Y(2irf). The 
mafnitude spectrum of two such signals, separated in time by 2t , has 

been shown [6] to be |2 cos2Trf t | |Y(2irf) That is the spectrum is 
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modulated, and the period is determined by the time separation (Fig. 
8). Th' spacing (Af) of the frequency minima may be used to deter- 
mine the time separation (At) of the ultrasonic echoes: 

Af - l/2t0 - 1/At. 
{S) 

If the wave speed is known, then the separation of the near and far 
flaw edges may be calculated and the flaw dimensions determined from 

2 Afslne (6) 

The orientation of the crack (6) may be determined from a number of 
angular measurements. 

EXAMPLES OF ULTRASONIC NONDESTRUCTIVE WELD EVALUATION 

As a test of our systematic method for evaluating welded struc- 
tures (Fig. 1 and previous descriptions) we began with two welds con- 
taining well-characterized defects. 

Weld sample //2 was carefully prepared to contain only planar 
discontinuities. Three artificial flaws, nominally 1/16", 1'8" and 
1'4" in diameter were incorporated into the weld, along its center 
line (Fig. 8). T' d plane of the defects was parallel to the sample 
surface. Both the top and bottom surfaces of the specimen were 
ground flat. 

Fig. 8. Weld Sample #2 Containing Planar Discontinuities 1/16", 1/8" 
and 1/4" in Diameter. 

IMAGING 

A 5 MHz focused transducer (approximately 6" focal distance, 1" 
diameter) was scanned in a watct bath above the weld. The water bath 
length was adjusted to focus the ultrasonic beam approximately at the 
depth the discontinuities were thought to occur.  Spacing between 
transducer positions (along the weld) was 5 mm. 

• the ultrasonic waveform returning from the weld is sampled, 
digitized and displayed (Fig. 8). 

• the signal is full-wave rectified (Fig. 8). 
• an estimate of the envelope of the waveform is determined 
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(Fii. 8). 
* the number of positions along the weld where the transducer 
will be located is input (Fig. 9). 

* wave speed for '.he mode of ultrasound used in the Imaging 
is input (Fig. 9). 

* the depth increment at which the echo amplitude is to be 
sampled is input (Fig. 9). 

* a file name identifying the image data to be stored is given 
(Fig. 9) and 

* the depth (time) range to be used for image display is defined 
(using the graphic terminal's cursor) (indicated by the verti- 
cal lines in Fig. 10). 

Fig. 9.  B-Scan Ultrasonic Image of a Weld Containing Three Planar 
Discontinuities (1/16", 1/8" and 1/4" in Diameter). 

Fig. 10.  Backscattering Spectra from Suspect Regions in Weld //2. 
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Ultrasonic Spectroscopy 

Broadband ultrasonic pulses from the 15 MHz unfocused transducer 
were coupled to the weld through a 6" water path. Backscattering 

# signals were acquired for each flaw at 0-, 10- and 20-degree refrac- 
ted angles in the solid.  The spectra computed from these signals was 
plotted versus frequency. The absence of deep modulation 
at 0-degrees indicates the plane or each flaw is approximately para- 
llel to the surface of the weld. The average spacing of minima in 
the spectra was determined (Table III) and equation (6) used to cal- 

• culate the flaw diameter. 

Table III.    Average Spacing of Minima in the Backscattering Spectra from 
Flaws in Weld #2. 

ID 10-degree Measurement 20-deRree Measurement 

A 9 MHz 4 MHz 

B 4.7 MHz 2.3 MHz 

C 2.55MHz 1.13MHz 

€ 



Nondes tructive Evalu ation Summary for Weld ill 

Longitudinal Wave Speed: 5939 in/ sec 

Shear Wave Speed: 
■ 1  * 1 

3627 in/ sec 

Young's Modulus: 2.566 

Shear Modulus: 8.219 x 1010 

Poisson's Ratio: 0.283 

Suspect Regions: ID X 1           z 
A 2.0 cm 0      7.5 

B 7.5 cm 0     7.5 

C 12.5 cm 0     7.5 

Flaw Type: ID 

A 

B 

C 

Type 

planar 

planar 

planar 

Flaw Orientation: ID 

A 

B 

C 

Angle with Respect to 

0° 

0° 

0° 

Surface 

Flaw Dimension: 

(assume circularly ID 10 Measurement 20 I leasuremen 

symmetric) A 1.8mm 2.06 mm 

B 3.5 mm 3.6 mm 

c 6.36 mm 7.3 mm 

Compare these ultrasonically determined results with the actual po- 
sition and dimensions below: 

ID X Y Z Diameter (mm) 

A 1.8cm 0 7.5cm 1.6 mm 

B 7 cm 0 8cm 3.2 mm 

C 12.05cm 0 8cm 6.35 mm 
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ULTRASONIC SCATTERING PROBLEMS WITH APPLICATIONS TO QNDE 

J. D. Achenbach 
Northwestern University, Evanston, IL. 60201 

Y. C. Angel 
Rice University, Houston, TX. 77001 

ABSTRACT 

A useful non-destructive method for flaw characterization is 
based on scattering of ultrasonic waves. This paper is concerned 
with scattering by cracks. An exact formulation of the direct 
problem, which leads to numerical results for the scattered field 
in the frequency domain, is briefly reviewed. A very useful 
approximate analytical approach is based on elastodynamic ray 
theory. For crack-like flaws, the high-frequency scattered signal 
outside of the zone of specular reflection is primarily generated 
by edge diffraction at "flash points" on the crack edge. For the 
inverse problem, crack mapping methods have been developed which 
are based on inverse ray tracing. Deviations from perfect 
"mathematical" crack geometries and Isotropie material behavior may 
significantly affect the scattered field. Nonlinear crack-face 
interactions and reflection by partially closed flaw planes are 
briefly discussed. Scattered-field results for an Isotropie and a 
transversely Isotropie solid are compared. 

1.  INTRODUCTION 

Failure of structural components is often initiated by the 
presence of flaws which are inherent in the bulk material, or 
which appear either in the course of the manufacturing process or 
after a period of service. In a damage-tolerant design philosophy, 
flaws are acceptable if they are sufficiently small so that they 
will not lead to failure during the service life of the structure. 
As part of a damage-tolerant design philosophy it is important to 
have reliable methods of quantitative non-destructive evaluation 
(QNDE), not only to detect the presence and the approximate 
location of a flaw, but also to determine its size, shape, and 
orientation. 

One of the most useful QNDE methods is based on the scattering 
of elastic (ultrasonic) waves by flaws in solids. The scattered- 
field approach attempts to infer geometrical characteristics of a 
flaw from either the angular dependence of its far-field 
scattering amplitude at fixed frequency, or from the frequency 
dependence of its far-field scattering amplitude at fixed angles. 

In experimental work on quantitative flaw definition by the 



■»"WW j m ■-• yr TI-WTr-"V^Tlir'rr'W-T,"a~l.*rr» r!ll "J.T^THTI H^SEH^EiaHTra 

ultrasonic pulse method» either the pulse-echo method with one 
transducer or the pitch-catch method with two transducers is used. 
The transducer(8) may be either in direct contact with the specimen, 
or transducer(s) and specimen may be immersed in a water bath. 
Most experimental setups include instrumentation to gate out and 
spectrum analyze the signal diffracted by a flaw. The raw 
scattering data generally need to be corrected for transducer trans- 
fer functions and other characteristics of the system» which have 
been obtained on the basis of appropriate calibrations. After 
processing» amplitudes and phase functions are available as 
functions of the frequency and the scattering angle. These experi- 
mental data can then be directly compared with theoretical results. 

The solution to the direct scattering problem, that is» the 
computation of the field generated when an ultrasonic wave is 
scattered by a known flaw» is a necessary preliminary to the 
solution of the inverse problem, which is the problem of inferring 
the geometrical characteristics of an unknown flaw from either the 
angular dependence of the amplitude of the scattered far-field at 
fixed frequency» or from the frequency dependence of the far-field 
amplitude at fixed angle. In recent years analytical methods have 
been developed to investigate scattering of elastic waves by 
interior cracks as well as by surface-breaking cracks» in both the 
high- and the low-frequency domains. 

2. DIRECT PROBLEM - INTEGRAL EQUATION APPROACH 

Scattering of time-harmonic signals by cracks has been 
analyzed extensively on the basis of linearized elasticity theory 
for a homogeneous» Isotropie solid. The propagation of waves in 
such solids is a classical area of investigation. The equations 
governing elastodynamic theory» and several pertinent mathematical 
techniques to obtain solutions» have been discussed in detail 
elsewhere1. 

From the theoretical point of view a flat crack is a planar 
surface across which the displacement can be discontinuous. The 
exact mathematical formulation of the elastodynamic field generated 
by the presence of a crack is rather complicated if the displace- 
ment discontinuities are not known a-priori» as is the case for 
scattering problems. Scattering of an incident wave by a crack is 
a mixed boundary value problem» whose exact solution satisfies 
one or more (generally singular) integral equations for the dis- 
placement discontinuities. Only for a semi-infinite crack can an 
analytical solution conveniently be obtained. The solution of the 
system of integral equations for a crack of finite dimensions 
requires a substantial amount of numerical analysis. 

Let u  define the components of the incident displacement 

field for the crack scattering problem. In the usual manner the 
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scattered field u  is defined as the total field» u  , minus the 

incident field, i.e., u   - u n + u*c. The components of the 

corresponding stress tensors are T.. , t. , and T . Usually the 

crack is assumed to be free of surface tractions; the-conditions 

on the crack faces A and A then are 

on A and A : in - - t..n. , (2.1) 

where n are the components of the normals to the crack faces. For 

a flat crack the scattered field may be expressed in the form 

\°(*> - - /j.tij;k(?-X)[uJ
C(Xy]njdA(X) . (2.2) 

A 

+ — +      G where n    is directed from A    to A , T. . ,   is the Green's stress 
ij ;k 

SC SC BC 
tensor, and [y (X)] « u (X+0) - u (X-0), is the crack-opening 
displacement. Here X ± 0 correspond to the faces A+ and A", 
respectively. Equation (2.2) gives an exact representation. The 
stresses according to (2.2) can be obtained by substitution into 
Hooke's law. Then by letting x approach A+, the stresses should 
satisfy (2.1). The resulting equations are integral equations for 

'sc 
[u ]. These equations require careful handling, because the 

integrands contain singularities. 

For simple geometries, such as penny-shaped cracks and two- 
dimensional slits, it is convenient to use Fourier transform 
techniques to derive a governing system of dual integral equations. 
These kinds of equations can be reduced to a single singular 
integral equation, which can then be solved numerically.2 

The integral equation approach has been used to obtain 
solutions for scattering by surface-breaking and sub-surface cracks. 
Analytical, numerical, and experimental results have been reviewed 
by Achenbach et al3. For a surface-breaking crack, theoretical 
and experimental results have been compared for the case of normal 
incidence. Figure 1 shows a comparison between theoretical and 
experimental transmission coefficients obtained by Yew et al . 
Experimental results for reflection of a surface wave by a sub- 
surface crack oriented normal to the free surface were obtained by 
Khuri-Yakub et al5. Figures 2 and 3 show theoretical and experi- 
mental results for the reflection coefficient. 

In two well-known approximate theories, which are valid at 
sc 

low and high frequencies, respectively, a form of [u (X)] is 
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Fig.  1.    Comparison of theoretical  ( ) and experimental results 
(x)  for the amplitude of the transmitted surface wave (from Ref.4). 
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Fig.  2.    Theoretical results for back- 
scattering by a sub-surface crack. 
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Fig.  3.    Experimental measurement of the 
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crack (Khuri-Yakub et al5). 
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postulated and u (x) is subsequently computed by (2.2). At low 
frequencies thestatic crack-opening-displacement can be substi- 
tuted in the integral» to give the so-called quasi-static 
scattering theory. At very high frequencies the geometrical 
elastodynamic field on the illuminated crack-face can be used as 
the crack-opening displacement. Subsequent evaluation of (2.2) 
produces the "physical elastodynamics" or Kirchhoff approximation 
to the scattered field. 

3. RAY METHODS FOR CRACK-SCATTERING PROBLEMS 

In ray theory it is assumed that disturbances propagate along 
straight or curved rays» and that the interaction of rays with 
inhomogene it ies follows simple geometrical rules which can be 
established on the basis of solutions to canonical problems. If 
the rules are known» then rays can be traced and (in principle) the 
signals that propagate along all rays passing through a point of 
observation can be superimposed to yield the complete field. The - 
geometrical aspects of ray theory have intuitive appeal» and they 
are relatively simple. From the mathematical point of view» ray 
theory gives an expansion which has asymptotic validity with 
respect to "high" frequency or "small" time after arrival of a 
disturbance. 

The scattering of a bundle of rays by a crack-like flaw 
follows relatively simple rules. At sufficiently high frequencies 
and outside the zone of specular reflection» diffraction at 
certain points on the crack edge, which have been called the "flash 
points", produces the dominant part of the scattered field. The 
flash points emit bundles of diffracted waves which propagate 
towards a point of observation. The basic theory has been pre- 
sented by Achenbach, et al2. Comparison of theoretical ray theory 
results with experimental results has also been given . 

4.  INVERSE RAY TRACING 

In the direct problem the incident wave and the geometrical 
configuration are known. For a given point of observation the 
positions of the flish points on the crack edge can then K 
determined by geometrical considerations, and the scattered field 
can subsequently be determined by direct ray tracing. If the 
geometrical configuration is unknown, but information is available 
on the diffracted field, an inverse ray tracing procedure can be 
used to determine the flash points on the crack edge from which 
diffracted signals have emanated. 

In recent papers7""9 two analytical methods have been developed 
to map the edge of a crack by the use of data for diffraction of 
elastic waves by the crack-edge. These methods are based on 
elastodynamic ray theory and the geometrical theory of diffraction, 
and they require as input data the arrival times of diffracted 



»"B ■"■ H^ ITW HT
^ m.BT» ir~ -g"^^^ s*fl*3i a-"-, IFT*.. 

ultrasonic signals. The first method maps flash points on the 
crack edge by a process of triangulation with the source and 
receiver as given vertices of the triangle. By the use of arrival 
times at neighboring positions of the source and/or the receiver» 
the directions of signal propagation, which determine the triangle, 
can be computed. This inverse mapping is global in the sense that 
no a-priori knowledge of the location of the crack edge is 
necessary. The second method is a local edge mapping which 
determines planes relative to a known point close to the crack 
edge. Each plane contains a flash point. The envelope of the 
planes maps an approximation to the crack edge. The material 
containing the era:»* was taken as a homogeneous, Isotropie, and 
linearly elastic solid. More recently, extensions to include 
anisotropy of the material have been given in Refs. 10-11. 
Mathematical details and a fairly detailed error analysis can be 
found in Ref. 9. References 7-9 also include applications of the 
methods to synthetic data. It is of particular interest that the 
local mapping technique allows for an iteration procedure whereby 
the result of a computation suggests an improved choice of the 
base point which in the subsequent iteration yields a better 
approximation to the crack edge. A comparison with experimental 
data has been given in Ref. 12. 

5.  CRACK-FACE INTERACTIONS 

The results of the preceding Sections are for a perfect 
mathematical crack, that is, an infinitesimally thin crack, with 
smooth faces. The effects of crack-face interaction are ignored 
in consideration of the perfect mathematical crack. However, the 
failure processes that result in a crack generally produce rough 
crack faces. Once a crack has been opened and the crack faces 
have undergone the slightest relative sliding displacement, ic 
must be expected that it will never completely close again due to 
incompatibility of the rough crack faces. Under subsequent loading 
conditions the faces of the crack generally may not be free of 
surface tractions, as is assumed for a perfect mathematical crack, 
nor will there be perfect contact between the crack faces. Unless 
the crack faces are completely separated due to a state of pre- 
stress, a complicated interaction between the crack faces is to be 
expected, which will be different for opening and closing of the 
crack on the one hand, and relative sliding of the crack faces on 
the other. For a slightly closed crack, the interaction of the 
crack faces will be a non-linear process which will depend strongly 
on the magnitudes of the tractions transmitted across the contact- 
ing crack faces. 

The effects of interaction between contacting crack faces are 
of particular interest in studies of crack detection and crack 
characterization by the use of the specular reflection and 
scattering of ultrasonic waves. A perfect mathematical crack acts 
as a perfect screen for reflection and scattering. A crack with 
interacting crack faces.may be a poor reflector, and thus difficult 
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to detect and characterize. In recent work13 it has been assumed 
that for the purpose of computing the fields of stress and 
deformation elsewhere in the body, the interaction between the 
upper and lower faces of the flaw plane can be described by 
appropriate relations between the tractions and displacement across 
a perfectly flat surface. This surface may be considered as the 
median plane of the actual flaw surface. Let us consider a two- 
dimensional configuration with a flaw plane in the plane y ■ 0, as 
shown in Fig. 4. In the analytical model we consider averaged 
tractions and averaged displacement discontinuities per unit area, 
with respect to coordinates in the flaw plane. The averaged 
tractions are continuous» which implies that at y - 0: 

*   + 
o - o i a 
y   y    yx 

o-o  » 
yx   yx 

(5.1a,b) 

where the + and - signs refer to the upper and lower sides of the 
flaw plane. It should be noted that (5.1a,b) include the con- 
ditions for a perfect mathematical crack» which are that the 
stresses vanish. In the present model for a flaw plane with rough 
faces» (5.1a,b) will be supplemented by relations between the 

*  * r    i      r 1 
stresses a  ,o > and the displacement discontinuities [v] and [u]» 

y yx 
respectively. 

Fig. 4. Schematic depiction of flaw plane. 

We will first con- 
sider the opening mode 
of the flaw plane. It 
is reasonable to assume 
that in the unloaded 
state» i.e.» when 

o - Ö, the faces will 
y 
be slightly separated: 
[v] « A > 0.  In the 
closing mode we have 

o < 0» and the required 

stress will increase 
rapidly as [v] -»-0. In 
fact we assume that an 
infinite interface 

stress o is required 

to close the flaw plane completely [v] ■ 0, i.e., to completely 
flatten out the roughness of the faces. The opening displacement 
cannot be negative since that would imply overlap of the faces. 
To separate the faces, [v] > A, a slight resistance has to be 
overcome. The behavior described here can be represented by the 
relation 



^ WZ1 *'HA«;17.1 T'T "3 1 T1 T'^V'ff-'TV W BT V" 

o*-TM^ (5.2) 
y   [v] 

Here T is the maximum tensile force (very small) that can be 
transmitted across the faces. Equation (5.2) represents a non- 
linear spring. It takes into account different behavior for 
opening and closing. If the flaw plane is already closed a local 
linear approximation may be adequate, as discussed by Thompson and 
Fiedler11. 

We have assumed that separation of the flaw-plane faces is 
independent of sliding of the faces. The opposite» however« can 
not be assumed. The resistance to sliding depends very much on 

the magnitude of a . When a    >  0 there will be very little resist- 

ance to sliding, while for a    < 0 there will be considerable 
y    ■       * 

resistance. A convenient relation between o  and [u] is that we 

, * . yX 

require |a | <_ S, and 

ie it & 
[ul «o /C for \a    1 < S» where C • constant, S ■ S exp(-ao ). J   yx     ' yx' o r        y 

(5.3) 

* 
Note that the critical value S depends on a . The relation that 

we have assumed satisfies the condition that S is small for 

o > 0, while S increases rapidly as o becomes negative, i.e., 

as the faces are pressed together. The key point to observe is 
the possibility of displacement hysteresis. The parameters 
T,A,C,a, and S have to be determined from the crack geometry and 

from experimental data. 

Equations (5.1)-(5.3) account for crack closure and for the 
related resistance to crack-face sliding. In Ref. 13 the 
relations have been used to investigate reflection and transmission 
of an incident pulse by an infinite flaw plane. Because of the 
nonlinearity the analysis had to be carried out directly in the 
time domain. The problem statement was reduced to a set of 
inhomogeneous nonlinear ordinary differential equations for the 
displacement discontinuities, [u] and [v], across the flaw plane. 
These equations were solved numerically. The reflected and trans- 
mitted displacement pulses then follow directly from [u] and [v]. 
Next the Kirchhoff approximation in the time domain was used to 
derive expressions for the specular reflection and transmission of 
an incident pulse by a crack with intersecting crack faces. Both 
incident longitudinal and transverse waves were considered. The 
IOBB of specular reflection as compared to a perfect (traction- 
free) crack has been exhibited by specific examples. 



TTTIT^TTV rrm \ • v«/» pur.i fTW r*^»17TT !PTP«TW TVTff CVTTV T 

1 T 

U. 

-1 

(8) 

.2 

/-\ 
'^ Id) 
'/A* '/    V '/       V //         » y        \ 

*~ »I i             i 

1 2    3    4 r  5 

Fig. 5.  (a) and (b), Far-field amplitudes for normally incident 
L and T-waves, respectively, (c) and (d), Spectra of (a) and (b). 

In Figs. 5a and 5b we have plotted the far-field amplitudes for 
wave incidence on a crack. The discontinuity in U is related to 

the rapid closure of the crack. The dashed curves in Fig. 5 are 
the same amplitudes for the stress free crack. Also plotted in 
Figs. 5c and 5d are the magnitudes of the Fourier transforms of 
UL and UT. 

6.  FLAW PLANE OF PERIODICALLY SPACED MICROCRACKS 

In Ref. 15, the interaction of elastic waves with a planar 
array of periodically spaced cracks of equal length was investi- 
gated. Normal incidence of both longitudinal and transverse waves 

was considered. The geo- 
metry is shown in Fig. 6. 
At some distance from the 

•f= j      plane of the cracks, the 
displacement fields appear 

I      as the superposition of a 
i      finite number of reflected 

and transmitted plane-wave 
propagating modes. The 
reflection and transmission 
coefficients corresponding 
to the propagating mode of 

21 

**2 

Fig. 6.  Array of cracks. 

order zero were computed for various values of the frequency and 
the ratio of the crack length to the crack spacing. The results 
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are comparable to those obtained for scattering of elastic waves by 
surfaces with periodic roughness. The results of Ref. 15 can also 
be brought into perspective with investigations for the reflection 
of elastic waves by a flaw plane, when the flaw plane is viewed as , 
a region where separation zones and contact zones can both exist» 
and friction may be significant over the contact zones. As dis- 
cussed in Section 5, Achenbach and Norris13 have proposed a set of 
non-linear boundary conditions to account for the separation and 
friction effects. Other boundary conditions, of a linear type, are 
discussed by Thompson and Fiedler11*. In Ref. 15 it is assumed that 
the separation zones are not affected by the action of the incident 
wave. The displacements as well as the stresses are continuous 
over the plane regions in between the cracks. Hence, the configu- 
ration models an interface with predetermined separation zones and 
very rough contact zones. 

The total field in the solid can be analyzed as the super- 
position of the incident field in an uncracked space and the 
scattered field in the cracked space. The scattered field is 
generated by prescribed surface tractions on the faces of the 
cracks which are equal in magnitude, but opposite in sign, to t.,e 
tractions of the incident wave. Because of the periodicity of the 
excitation and of the boundary conditions, the field variables take 
periodic values. The mixed-boundary value problem for a typical 
strip is reduced to a singular integral equation of the first 
kind for the dislocation density across the crack faces. The 
integral equation was solved numerically. There are certain 
frequencies for which the integral equation does not hold. At 
these frequencies, a pair of integral equations is needed to 
describe the behavior of the system properly. The balance of rates 
of energies, which involves the incident wave as well as the 
reflected and transmitted propagating modes, is obtained for all 
frequencies. The reflection and transmission coefficients are 
easily computed once the dislocation density is known. 

Figure 7 shows the reflection coefficients versus 
2i/\-  * iiil/itc-.    In Fig. 8 the exact theory is compared with two 
approximate theories. The first theory is a static limit to the 
dynamic theory. The second one is inspired by Thompson and 
Fiedler's paper11*, where the array of cracks is replace.'1 by an 
equivalent spring-layer. Both approximations agree with the exact 
theory at low frequencies. 

7.  .HE EFFECT OF ANISOTROPY 

We conclude with a brief discussion of the problem of 
scattering by a stress-free crack in an anisotropic solid. In 
practice, many materials exhibit some form of anisotropy.  Examples 
of transversely Isotropie solids are laminated media with periodic 
layering (on a length scale much larger than the characteristic 
thicknesses of the layers), and metals that have been subjected to 
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Eig. 7. Reflection coefficient versus frequency for (a) a/£ « .5, 
(b) ■ .8, and (c) - .9999; v « 0.3, incident longitudinal wave. 
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 1—             I 
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Fig. 8. Reflection coefficient versus frequency for an incident 
longitudinal wave (a,b) and an incident transverse wave (c,d); 
straight solid lines: static approximation; dashed lines: spring- 
layer approximation; curved solid lines: exact results: v - 0.3. 
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certain manufacturing processes (e.g.» rolling). Anisotropy may 
also be induced in an isotropic solid by large prestressing or 
8training. 

The number of known solutions for scattering problems in 
anisotropic solids is much smaller than for isotropic elasticity. 
The present discussion, which is based on Ref. 16, is concerned 
only with the direct scattering from cracks in transversely 
isotropic solids. The inverse problem of locating and sizing a 
crack in anisotropy has been discussed in Ref. 10. 

We first consider a semi-infinite crack located in a plane of 
symmetry of a transversely isotropic material. The incident wave 
motion is confined to the plane which is normal to the crack edge. 
Therefore, the scattering geometry is two dimensional. This 
problem can be viewed as a canonical problem whose solution is 
necessary for the computation of the diffraction coefficients, and 
development of an anisotropic geometrical theory of diffraction 
(GTD). 

Now, let a plane quasi-longitudinal wave of unit amplitude be 
incident at angle 8 with the plane of the crack, on a crack of 
finite length D which is located in a plane of symmetry. The 
diffracted quasi-longitudinal fiel'* in the back scattered direction 
can then be computed by using the diffraction coefficient for each 
tip of the crack individually. Superposition of the two crack-tip 
diffractions gives a high-frequency approximation to the back 
scattered or pulse-echo signal. It is assumed that D is of the 
same order as the wavelength. 
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Fig. 9. Backscattered amplitude from a finite crack. Dashed 
line is the isotropic result, k ■ Do)/v/b. 

Taking the origin at the center of the crack, the far field 

amplitude A = |(r/d) u(r,8)| has been plotted in Fig. 9 as a 

function of the dimensionless frequency Du>//b. We note that ai//b 
is the longitudinal wave number in the direction normal 
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to the slit (6 - IT/2) . The Isotropie result (a/d ■ 4) is also 
plotted in Fig. 9 for comparison. Because b is the same for the 
two examples, the effect of anisotropy disappears at normal 
incidence. 

Figure 9 shows that the anisotropy is important, especially at 
angles of incidence near grazing. 

CONCLUDING COMMENT 

In this paper some elements of direct and inverse crack- 
scattering problems have been summarized« with a view towards 
applications to quantitative non-destructive evaluation. For 
details the reader is referred to the cited references. 
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ANALYSIS AND SYNTHESIS OF OPTIMIZED EDDY CURRENT PROBES 

B. A. Add 
Edward L. Ginzton Laboratory 

Stanford University 
Stanford, California 94305 

ABSTRACT 

The aim of this presentation is to give a coherent review of eddy current probe 
design, with emphasis on task-oriented choices of probe geometry. Flaw detection and 
sizing optimization is discussed with respect to detection sensitivity and accuracy of 
inversion, taking probe geometry and operating frequency as design parameters. The 
theoretical base for these procedures is presented, together with recent experimental 
comparisons of theory and experiment, including measurements of probe field distribu- 
tions and methods for utilizing these measurements in predicting probe performance. 

I. COMPARISON OF EDDY CURRENT AND ULTRASONIC METHODS 

Since the principles of ultrasonic testing are now much more widely understood 
than those of eddy current testing, it is useful to begin by comparing the physical prin- 
ciples and the numerical magnitudes of the parameters. In both cases the flaw interacts 
with fields excited by the transducer (or probe) and the flaw response can be described 
in principle as a scattering process. Figure 1 illustrates the electromagnetic (or eddy 
current) detection process from this point of view. To emphasize the scattering view- 
point the transmitting and receiving transducers are taken to be small horn antennas 
operating at about 1000 Mhz. At this frequency the wavelength in air is approximately 
30 cm, comparable to the dimensions of the horns. In the metal workpiece, on the 
other hand, the wavelength is about 15 microns (in aluminum). This corresponds to 
a phase velocity of 15000 m/s, much smaller than in air but considerably larger than 
the velocity of an ultrasonic wave. The attenuation of the electromagnetic wave in 
the metal is very high, leading to a penetration depth of only 2.5 microns at this fre- 
quency. Electromagnetic testing of metals at high frequencies is therefore suitable only 
for surface flaws. Because of this fact, and the high velocity of the wave in the metal, 
a pulse echo experiment gives a very close-in response. A further difficulty with pulsed 
electromagnetic testing is that propagation in the metal is very dispersive, leading to 
severe distortion of the pulses. Nevertheless, pulsed electromagnetic techniques are 
used in practice, but in a very different way than in ultrasonics. In this paper, only 
continuous wave testing will be discussed. Here, the principle effect of the parameters 
being greatly different than in ultrasonic testing is the extreme degree of refraction 
occurring at the interface (Fig. 1). The difference in phase velocities in air and in metal 
is so great that a scale drawing of the refraction angle is not possible, but this figure 
does give an idea of the effect. In pulsed ultrasound the effect of refraction is to change 
the angles of the incident and scattered beams at the flaw. This is not relevant for 
continuous wave electromagnetic testing. Here, as will be seen below, the important 
factor is the shape of the "interrogating field," i.e., the field of the probe in the absence 
of the flaw. Because of the strong refraction at the interface, this field is very different 
from the field of the probe in air, and an important part of quantitative electromagnetic 
testing is concerned with characterizing the probe field and determining its effect on 

1 
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FIGURE 1 

An Eddy current "scattering" experiment 

the interaction of the probe and the flaw. 

Very little electromagnetic (or eddy current) testing is performed at frequencies in 
the range of 1000 Mhz. Typically, operation is in the range of a few hundred kiloherz 
to a few megaherz. Figure 2 shows a basic probe geometry. The probe consists of 
a multiturn coil placed very clnse to the surface. In aluminum the field penetration 
depth into the workpiece is approximately 0.25 mm at 500 kiloherz. It varies inversely 
with the square root of the frequency, so that lower frequencies are required for flaws 
in the interior of the workpiece. The eflec' i.f changing frequency are, however, 
much more complicated than this. A very it p?<%ant parameter in determining the 
nature of the interaction between the probe anu a flaw is the ratio of a characteristic 
dimension a of the flaw to the penetration depth (or skin depth) 6. The ratio of a 
characteristic dimension of the probe itself to the skin depth is also important in that 
it has a significant influence on the shape of the interrogating field in the work piece. 
Figure 3 gives a graphic example of an ultrasonic transducer operating under conditions 
typical of eddy current testing—i.e., a transducer of dimensions small compared with 
the wavelength in the water bath, plus a workpiece of material with high less and 
velocity much smaller than that of the bath and placed in the very near field of the 
transducer. In this situation the field at the flaw is highly nonuniform unless the flaw 
is very much smaller than the probe—a situation that makes the theoretical problem 
much more difficult than in ultrasonics. Furthermore, difficulties arise in calculating 
the field of the probe in the presence of the workpiece. If the workpiece is perfectly 
conducting its presence can be accounted for by using image theory (Fig. 3). Over 
an imperfect conductor there is a single image of the probe, and Fourier transform 
methods are used to find the interrogating field.1 

II. THEORY OF EDDY CURRENT PROBE-FLAW INTERACTION 

The first derivation of an eddy current detection formula was presented by Burrows 
in 1964 (Fig. 4).s It is for a transmission probe geometry and applies to ellipsoidal in- 
clusions that are snail compared with the skin depth. This formula gives the important 
result that the flaw response is proportional to the product of the normalized transmit- 
ter and receiver coil fields at the position of the flaw. Part (c) of the figure gives the 
form of the formula for the particular case of a magnetic inclusion. The restriction to 
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Typical eddy current probe geometry. 
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Tbc basic eddy current detection formula. 

a small flaw of ellipsoidal shape is a very severe limitation in practical problems, but 
it can be removed by applying the Lorentz reciprocity relation to the problem (Fig. 
5).3 In the formula of the figure the unprimed fields are those existing in the unflawed 
workpiece—i.e., the interrogating field—and the primed fields are those existing in the 
presence of the flaw. As given in the figure, the eddy current formula requires the 
inclusion to be neither of ellipsoidal shape nor small compared with the skin depth 
and the probe. The same formula can be used to evaluate the effect of variations in 
the height of the probe above the surface of the workpiece. The signal arising from 
such changes, called liftoff, is the dominant spurious signal limiting the sensitivity of 
detection in eddy current testing. It is an important factor in probe design. To apply 
the formula of Fig. S to the calculation of liftoff, the "flaw" is taken to be a particular 
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General reciprocity relation formulation of eddy current detection. 

type of void consisting of the removal of a layer from the surface. (In using the formula 
for a void the changes in material parameters within the flaw—6t and 6p—are the 
differences between the parameters of air and those of the workpiece). 

The formula given in Fig. 5 is suitable for inclusions and voids of finite volume, 
but not for thin cracks. For this class of flaw the reciprocity relation derivation is cast 
into the form of a surface integral. As applied to a single coil (or absolute) probe (Fig. 
6), this approach leads to3 

AZ-4/ {EXFt-EfXtyridS (1) 
f JSr 

where the primed and unprimed fields have the same meaning as in Fig. 5. This is an 
exact result and has no restrictions on the size or shape of the flaw. It can be used for 
all types of flaws, even inclusions and voids, but it is particularly well-suited to tight 
cracks and liftoff. The basic problem in applying it is to evaluate the primed fields on 
the surface of integration, which is arbitrary so long as it completely encloses the flaw. 
In some cases it is most convenient to take this surface as the boundaries of the Caw 
but, for surface cracks, it will be seen in Section V that a more suitable choice is the 
surface of the workpiece (Fig. 6). This is also a good choice for liftoff calculations. 
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FIGURE 8 

Surface integral formulation of the eddy current signal for an absolute-type eddy current 
probe. 

III. FACTORS INFLUENCING THE INTERROGATING FIELD 

Equation (1) can be recast in a form that explicity displays the interrogating field,2'3 

AZ 
JSr    In Sf I InterrotattniFteld 

J Characterittie 1   , _ 

(     Function     J 
(2) 

Here, the surface of integration is the surface of the workpiece, as in Fig. 6, and is 
effectively restricted to the upper face of the workpiece mar the flaw, unless the flaw 
is close to an edge. The reason for this restriction is that a typical probe (Fig. 2) is 
much smaller than an electromagnetic wavelength in air. It therefore has almost no 
radiation and its magnetic field, being described by quasistatic equations, dies away 
rapidly with distance from the probe. In Eq.(2) x and y are coordinates in the top 
face of the workpiece, and the tangential H field in the first term of the integrand is a 
component of field parallel to the workpiece surface in the absence of the flaw—i.e., it is 
the interrogating Seid. The second term of the integrand is the characteristic function 
of the flaw, containing information about its shape and dimensions. As in Eq. (1), this 
formula can be used for both tight cracks and liftoff effects. 

Equation (2) explicitly displays the role played by the interrogating field in con- 
trolling the probe-flaw interaction. The flaw response may be described as a projec- 
tion of the characteristic function onto the interrogating field.  This fact defines the 
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Two basic air core probe configurations. 

relationship between probe design and flaw response optimization. The interrogating 
üeld is controlled by two factors: (a) probe geometry, (b) workpiece conductivity, and 
(c) operating frequency. Figure 7 shows two different probe geometries based on the 
simple air-cored absolute probe, one with the coil axis vertical and the other with it 
horizontal.4 Figure 8 shows the same two geometries for a ferrite-cored absolute probe. 
It is clear from Fig. 7 that the vertical coil has an interrogating field that is much 
more highly nonuniform. In fact even a very small flaw placed directly at the center 
of the tangential magnetic field pattern (solid arrows) in part (a) of the figure sees a 
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Ferrite core probes corresponding to the two types in Fig. 7. 

very nonuniform field. By contrast, the same small flaw placed at the center of the 
field pattern in part (b) of the figure sees a quite uniform field. From Eq. (2) this will 
have a pronounced influence on the probe responses to both flaws and liftoff. It was 
noted earlier, in connection with Fig. 3, that analysis of the interrogating field over a 
workpiece with finite conductivity is carried out in the Fourier transform plane. The 
effect of the workpiece on the individual Fourier components is controlled by both the 
conductivity of the material and the operating frequency of the probe, so that the same 
probe can have significantly different interrogating fields over different workpieces and 
at different frequencies (Reference 1). This means that special care must be taken in 
characterizing the field of an eddy current probe (Section IX). 

IV. LIFTOFF DISCRIMINATION 

The liftoff signal is typically orders of magnitude larger than the flaw signal and 
must be well suppressed. Three techniques are commonly used: (a) accurate height 
control by means of spring loading, an air bearing, or some feedback system; (b) phase 
discrimination; and (c) balanced probe construction. Figure 9 illustrates the principle 
of phase discrimination. It is found experimentally, and confirmed by theoretical 
modeling, that a flaw signal and a liftoff signal have different phase angles in the 
impedance plane. For the absolute type of probe under discussion the "signal" consists 
of a change in the input impedance of the probe. This is detected by placing the probe 
in a balanced impedance bridge and observing the change in bridge output voltage 
in both magnitude and phase. The output is displayed with its real and imaginary 
components on the vertical and horizontal axes of a picture tube. In this visual display 
of the probe impedance changes the spot moves in a different angular direction when the 
probe moves over a flaw than it does when the probe liftoff is changed. To exploit this 
effect in discriminating against liftoff the electronics are arranged to permit rotation 
of the display. The liftoff signal trajectory is then oriented along the horizontal axis 
as shown in Fig. 9, where part (a) is for a low frequency probe (100 Khz) and part (b) 
is for a microwave probe (1000 Mhz). The flaw signal is then measured in the /ertical 
(quadrature, Q) channel of the picture tube, while the liftoff signal is primarily in the 
horizontal (jn-phase, /) channel. In this procedure, only the component of the flaw 
signal that is 90* out of phase with the liftoff is measured. For high detection sensitivity, 
optimum probe design requires choosing the geometry and operating frequency to obtain 
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maximum flaw /liftoff ratio in the Q channel of Fig. 9. Since the liftoff, as well as the 
flaw signal, depends on frequency (Fig. 10) this is a mnltiparameter optimization. A 
third procedure for improving liftoff discrimination is to use a balanced probe. The 
simplest version of this is the differential probe, which consists of two identical coils 
that are connected in opposite arms of the detection bridge. Liftoff produces identical 
impedance changes in the two coils. This does not unbalance the bridge and does not 
produce an output signal, unless the probe is tilted. 

V. PROBE-FLAW INTERACTION MODELING 

The problem in applying Eq. (1) to the analysis of flaw response lies in evaluating 
the primed fields around the complicated shape of an actual surface crack. Even for 
idealized shapes, such as semi-circular or semi-elliptical flat cracks, approximations or 
purely numerical methods must be used. Analogies can sometimes be used to advantage. 
Two versions of the hydrodynamic analogy are useful in the limits of low a/6 and high 
a 16 (Fig. 11). The top of the figure makes use of the fact that the current flow in 
this case approximates very well the flow of a nonviscous fluid around an obstacle. 
In Fig. 12 this analogy is exploited in deriving a low frequency inversion procedure 
that exactly parallels a popular inversion method in ultrasonic nondestructive testing. 
Unfortunately, the method is not useful in eddy current testing because the phase angle 
between the flaw signal and liftoff is small in this region and there is consequently no 
liftoff discrimination. Another, much more useful, hydrodynamic analogy is illustrated 
in part (b) of Fig. 11. In this case, where the skin depth is much smaller than the 
depth of the surface crack, it has been shown that the electric field on the top surface 
of the workpiece and on the faces of the crack is derivable from a potential function 
that satisfies the two-dimensional Laplace equation. This means that the electric field 
in and near the crack has streamlines and equipotential functions as shown on the 
unfolded crack structure in the figure. It turns out that this is exactly a well-known 
hydrodynamic problem with an analytical solution for the case of the semi-circular 
(half-penny) crack. This result can be used to calculate the flaw signal of a semi-circular 
surface crack interrogated by a uniform eddy current field.3 

To explain the method used for modeling the interaction between an eddy current 
probe and a three-dimensional surface crack, it is best to begin with a two-dimensional 
surface crack in a uniform field (Fig. 13). The theory to be described is strictly 
applicable only to the large a/6 regime, but experimental results show that it gives 
quite good agreement for a/6 as small as 1.5. As was noted above, the small a/h regime 
is not as interesting practically because of it* poor liftoff discrimination. Figure 13 
illustrates the two-dimensional crack geometry and the formula for the change in probe 
input impedance due to the crack. In deriving this formula Eq. (1) was used, with the 
surface integral performed over the top face of the workpiecs. The magnetic field in 
the mouth of the flaw is aporoximated by the field on the surface of the workpiece in 
the absence of the flaw. To calculate the electric field in the mouth of the flaw, a line 
i.tegral is performed around a loop comprising the walls and mouth of the flaw. This 
line integral is related to the applied magnetic field through Maxwell's equations, In 
addition, the current flow around the lips and the tip of the crack are modeled according 
to Kahn's analysis. Details are given in Ref. 3. In the figure, the different terms in the 
AZ formula are labelled according to their physical origins. The same approach has 
been followed for a semi-circular surface crack, using the field modeling of Fig. 11(b). 

9 



» VTT T   W^ >   r    >    '    T™^ T:W ~' »Zra^L*>T"7\ % !■%#!■* *»TB in» L ™V ".^1.* t * AT 

FLAW 
FLAW 

(a) (b) 

FIGURE 9 

Phase discrimination between flaw and liftoff signals. 
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Comparison of eddy current flow in the low and high a/6 regimes. 

Results of this calculation are given in Ref. 3. The case of a semi-circular surface crack 
is much too restrictive for practical use. What is actually needed for modeling of real 
fatigue cracks is a semi-elliptical surface crack, where the ratio of the depth a to the 
surface length 2e is a variable parameter. This problem has not yet been solved, and 
current modeling of surface cracks is based on the rectangular crack geometry (Fig. 
14),5 which will be discussed more fully in Section! VII and VIII below. 

11 
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Eddy current versus ultrasonic inversion of "small" semicircular surface cracks. 

VI. OPERATING FREQUENCY OPTIMIZATION 

Figure 9 illustrated the principle of phase discrimination, in which the trajectory 
of the liftoff signal in the complex impedance plain is oriented along the horizontal 
(or /) channel of the display tube and the flaw signal is read from the vertical (or Q) 
channel. The modeling theory summarized in the preceding sections, and detailed in 
the references, predicts the frequency dependence of both the flaw and liftoff signals. 
From this it is possible to predict the frequency required for optimizing the flaw/liftoff 
ratio. If the ratio is taken between the Haw signal S and the total liftoff signal (in the 

12 
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Two-dimensional surface crack in a uniform field. 

horizontal channel of Fig. 9), the frequency dependence is as shown schematically in 
the lower curve of Fig. IS. On the other hand, if the ratio is taken witii the residual 
liftoff N in the vertical channnel of the display tube the upper curve of the figure is 
obtained. This is a significant difference because it predicts that, without liftoff phase 
discrimination, the optimum frequency is at a/6 » 1, while the optimum with phase 
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A three-dimensional rectangular surface crack. 
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discrimination is for a/4 > 1. To illustrate the practical significance of this result, 
actual frequencies are shown on the horitontal axis of Fig. IS for a crack with a equal 
to 0.2 mm in stainless steel. 

VII. UNIFORM FIELD VERSUS NONUNIFORM FIELD DETECTION 

Figure 7 showed how the nonuniformity of the field interrogating a flaw depends 
on the geometry of the probe. For a given probe it also depends on the size of the Taw 
relative to the probe. This is illustrated in Fig. 16. The left side of the figure shows a 
large flaw and a small flaw superposed on a plane view of the eddy currents induced by 
a simple absolute coil (Fig. 2). On the right of the figure is given the variation of the z 
component of the applied magnetic field along the z axis. This is the interrogating field, 
since the y component of the magnetic field is zero in the plane of the flaws postioned as 
shown. The large flaw at the center of the coil is interrogated by a highly nonuniform 
field, as was noted in connection with Fig. 2. By contrast, the small flaw positioned 
at the maximum value of Ht is in an almost uniform field. This is the ideal position 
for application of the uniform field theory described above, but it is not one frequently 
encountered in practice. For this reason it has been necessary to extend the theory to 
>he case of a nonuniform interrogating field.8 No change in principle was involved; only 
a modification of the equations and the software was required. Detailed calculations 
have been made for approximately rectangular shaped EDM notches of dimensions such 
that the interrogating field of the probe used in the experimental tests was substantially 
nonuniform over the length of the flaw. These calculations were made for different 
postions of the flaw relative to the probe. A comparison of theory and experiment is 
shown in Fig. 17 for different values of a/6, with Xo denoting the distance of the center 
of the flaw from the center of the coil.*'7 

VIII. FLAW SIGNAL INVERSION IN A UNIFORM FIELD 

Figure 17 showed good agreement of theory and experiment for nonuniform inter* 
rogating fields at values of a/6 as small as 1.5. It is not immediately clear how to 
use these results for inverting the signal data to determine the characteristics of the 
flaw. (Since the original presentation of this paper, an approach to the general inversion 
problem has been developed and is presented in Ref. 8). The problem of the uniform 
interrogating field is much simpler and can be approached algebraically. Figure 18 il- 
lustrates the method. The AZ formula for a rectangular surface crack in a uniform field 
can be reduced to the form shown in the figure, where the crack dimensions are defined 
in Fig. 14, 6 is the skin depth, and AZ is normalized by the constant interrogating field 
factor of Eq. (2). Inversion proceeds by the following steps:6 

(a) The E's are functions of a/e only. 

(b) The frequency appears in 6 only. 

(c) The expression in curly brackets is a polynomial 1/6 in unknown coefficients. 

(d) Measure AZ at three different frequencies. 

(e) Step three gives three linear equations in the unknown coefficients of the 
polynomial terms. Solve for these coefficients. 

(f) From the formula, the ratio of the second and third coefficients is 6u, the 
opening of the flaw (Fig. 14). 

15 



rn—• »   i •■- -^- ■"- Kn »n»ri.^iT*;y'!^*T5T?¥Fm rrw^~'*^r*^?ww~m7¥~7~' 

FIGURE 10 

Flaw detection in a uniform and a nonuniform eddy current field. 
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(g) The square of the first coefficient divided by the second is a function of a/e 
only. The value of a/e can be extracted by using a lookup table constructed 
from Fig. 18. Value of e can then be obtained by dividing the second coefficient 
by El and taking the square root. 

(h)  Finally, a is found as the product of c by a/e. 

This procedure has not been tested experimentally because of the aiffl<*ulty of realizing 
good uniform field conditions. 

DC. PROBE FIELD MEASUREMENT 

The importance to quantitative inversion of eddy current flaw signals of having 
an accurately measured probe field shape is clear from the above discussion. Figure 19 
shows two experimental methods that have been tried for this purpose.0 Neither of these 
approaches is completely satisfactory, and further research is required in this area. The 
Hall probe technique is restricted to frequencies lower than those used for many types 
of probes, and frequency scaling is possible only for air-core coils. Furthermore, the 
geometry of the Hall probe makes it unsuitable for very close-in measurements of the 
tangential (or horizontal) component of the magnetic field (Eq. 2). The perturbation 
technique shown at the right of the figure is satisfactory with regard to these features, 
but it does not give an absolute measure of the field nor is it applicable to measuring the 
field distribution of the probe in air. Measurement of ths probe field in air i.r important 
because, as noted in Section III, the probe field over the surface of a workpiece depends 
on the properties of the material. The probe itself is characterized by its field in air. 
Once this has been measured, the field over any workpiece surface can be calculated by 
Fourier transform methods. 

X. CONCLUSION 

In this paper a review has been given of the principles involved in optimizing 
eddy current probes for sensitive detection and quantitative sizing of flaws, especially 
surface fatigue cracks. Reference 10 may be consulted for a more detailed treatment. A 
theoretical method was described for prediction of probe performance from knowledge 
of the probe field shape in air, and comparison of theory and experiment was reported 
for a rectangular surface flaw interrogated by a nonuniform field. There is now a need 
to extend these ref ults to flaw and probe geometries that represent more realistically 
the practical problems encountered in the field. Examples of direction! in which to 
proceed are: semi-elliptical surface flaws, ferrite-core coils, differential- and reflection- 
type probe geometries, and flaws in complicated environments such as corners and 
edges. Improvements are also needed in methods for measuring the fields of absolute, 
differential, and reflection probes. Another area requiring attention is calibration of the 
electronics so that the absolute magnitude and phase of &Z can be measured. This 
information is required for quantitative inversion of flaw data. 

17 
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Inversion graph for detection in a uniform field. 
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ELASTIC WAVE INVERSE SCATTERING IN NON-DESTRUCTIVE EVALUATION 

James H. Rose* 
Ames Laboratory, USDOE 
Iowa State University 

Ames, IA  50011 

ABSTRACT 

Ultrasonic detection and characterization of flaws in metals and 
ceramics is of considerable technological interest.  Suffering and 
inverse scattering theories have recently been applied to these tasks 
in a systematic manner and considerable progress has resulted.  This 
paper first reviews briefly the development of scattering and inverse 
scattering methods in the AF/DARPA Program in Quantitative Non-Destruc- 
tive Evaluation.  Then one particular inverse method, the inverse Born 
approximation, is discussed in detail.  Progress is reviewed and the 
ability of the method to distinguish volumetric and crack-like flaws 
is demonstrated in simple cases. 

INTRODUCTION AND REVIEW 

The use of high frequency sound waves to detect flaws in struc- 
tural materials and machine parts has a long and varied history [1]. 
In particular, a strong base of engineering applications has developed 
in the last several decades [2,3,4].  Over the last ten years, a sys- 
tematic effort has been made in the AF/DARPA Progr im in Quantitative 
Non-Destructive Evaluation to develop the fundamental scientific disci- 
plines needed to support and extend the engineering developments [5,6]. 

The initial efforts in the AF/DARPA program were concerned with 
understanding the interaction of the probing sound beam with the flaw. 
Primary emphasis was placed on understanding the scattering of elastic 
waves by isotropic flaws in an isotropic, homogeneous elastic space. 
Samples were constructed with small (500pm typical dimension), well 
defined voids, inclusions and cracks in diffusion bonded titanium sam- 
ples.  Ultrasonic scattering measurements [7,8] were compared with theo- 
retical scattering models.  In particular, analytical theories were 
developed for the short wavelength [9], the long wavelength [10,11], 
and the weak scattering limits [12,13].  For the general case, numeri- 
cal calculational procedures have been developed and implemented [14-19], 
Agreement between theory and experiment is excellent. 

Once the probe-flaw interaction was partly understood, attention 
was turned to the inverse-scattering method.  This is the general pro- 
blem of characterizing the flaw (e.g., size, shape, orientation and 

This work was sponsored by the Center for Advanced Nondestructive 
Evaluation, operated by the Ames Laboratory, USDOE, for the Air Force 
Wright Aeronautical Laboratories/Materials Laboratory and the Defense 
Advanced Research Projects Agency under Contract No. W-7405-ENG-82. 
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composition) given the scattering amplitude.  Important progress has 
been made in the long wavelength [10,11], the high frequency (20-22) 

# and the weak scattering limits (23-27).  In addition, ultrasonics ima- 
ging systems based on the optical analogy methods, tb« high frequency 
asymptotic approach and the weak scattering limit can all be used to 
develop a single inversion algorithm (20,23,30). This algorithm, 
which is the subject of this paper's main text, has been tested ex- 
tensively both wi~h experimental data (31,32) and numerically gene- 

9 rated scattering amplitudes (33). Again, good agreement has been 
obtained between theory and experiment. 

Recently, the program's focus has turned to several problems which 
must be overcome to obtain a straightforward and cost effective imple- 
mentation of the previous work in an industrial setting.  First and 

# foremost, the problem of detecting [34,35] flaws is being addressed. 
This effort involves the development of a measurement model which pre- 
dicts the observed signal from a particular defect in a particular part 
[36].  Important elements in the development of a measurement model 
are (1) the statistics of the flaw and background distribution (2) the 
effects of surfaces and other boundaries and (3) the effects of dif- 

V fraction and focussing on the propagation of the probing beam and the 
scattered signal.  Important progress has been made in the development 
of measurement models for samples with flat and cylindrically curved 
surfaces immersed in water.  Current efforts involve the cross-check- 
ing of the measurement model with observed signals.  The good agree- 
ment obtained leads to the possibility of obtaining useful and reli- 

)• able estimates of the probability of flaw detection. 

I In this paper we will focus on a relatively small area of progress. 
s Namely, the development of the general inverse scattering algorithm 
• mentioned above to determine the size, shape and orientation of inter- 
I nal flaws.  The discussion will be developed in terms of the elastic 
|~         wave inverse Born approximation (IBA) [23,24].  In Section II the der- 

ivation of the IBA is reviewed in the frequency domain. A time domain 
I exposition is given in Section III.  In Section IV we discuss a "one- 

dimensional" version of the IBA and test it with both theoretical and 
; experimental data.  Section V tests the full "three-dimensional" form 
* of the IBA.  Finally, the paper is concluded with a discussion and 
I summary. 

; II.  THE INVERSE BORN APPROXIMATION IN THE FREQUENCY DOMAIN 

I The direct and inverse Born approximation are reviewed in the fre- 
quency domain.  Following closely the work of Gubernatis et al. [13] 
we describe the Born approximation for the direct scattering problem 
in the frequency domain.  Then following Rose and Krumhansi [23] we 
show that it naturally leads to a simple inversion procedure. 

The scattering geometry is shown in Fig. 1. A flaw with homoge- 
neous isotropic material parameters is centered about the origin of 
coordinates.  A plane wave in the displacement field propagates in the 
+e° direction and scatters off the flaw. The scattered displacement 



*-■*-**■<*-' r   iT" 'M-:a-:V'B'l W"*."WTT -ST/TOTT WTTW-H T^rW-J.TrrfW^»*   JffT^.WV» UTT^PI U ■ VJ * it"*  l- * 8 # JJ F '^1Ü TS"j 

Fig. 1.  Shows the scattering geometry where e° and es are unit vec- 
tors in the direction of incidence and scattering, respec- 
tively.  The flaw is indicated by the characteristic function, 
y(r"), which is one inside the flaw and zero outside. 

field is.then measured in the far field in the direction denoted by 
es.  The polar and azimuthal angles are denoted by 6 and 4  where cos8 
= es«e°.  The geometric features of the flaw are described by the char- 
acteristic function y(.t)  which is one if t  is inside the flaw's boun- 
dary and is zero if t  is outside. The material properties of the flaw 
are chosen to be constant.  The Lame parameters and density of the 
flaw are denoted by Af, uf,   and pr. The same quantities for the host 
are X, u and p.  The differences in material properties are denoted 
by <5p = Pf-p, 6\ -  Xf-X and Ap = Uf-p. 

The scattering process is governed by the elastodynamic wave equa- 
tion which in the integral equation form [131 is 

u^r.oi) * u.(r,u>) + ID 6p J d r'-y (r1 )g  (|r-r'| ,w) u.(r',u) +    (i) 

5Vln.H3r,Y(r')gij,k(|r-r'|,u)ultm(?'). 

We use standard tensor notation. Repeated Roman indices indicate sum- 
mation and commas indicate differentiation with respect to the follow- 
ing indices.  Cfj^ denotes the elastic constants of the material which 
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are determined by Che Lame parameter for an Isotropie material.  The 
displacement field is denoted by u and the incident wave is given by 

»o 
o,-»- .   ike T -iwt «      /-*■    \    -iut ,_% 

u.vr.t) ■ e      e    a.   u.(r,u) e \2) 

Here w is the angular frequency; a\, the polarization vector; and, k, 
magnitude of the wave vector. The Green's function is denoted by gj« 
and is chosen to represent out-going spherical waves. Explicitly, 

,„  ,    1  . *ij 62 ei8R   3  3 , eiaR  eißR ,   m gij(R'u) * —2 l "A "3x71x7 ( — F> ]   (3) 
4npüi i  j 

Here a and 6 are respectively the wavevectors of longitudinal and 
transverse waves and 6j* is the Kronecker delta function. 

For a given flaw, the solution of Eq. 1 would exactly determine 
the scattering problem. However, the integral equation is generally 
intractable and approximate solutions are often sought. The Born 
approximation consists of replacing the exact fields u^ and uj m on 
the right side of Eq. 1 with the values of the incident field, i.e., 
u? and u°  . This approximation is reasonable, if the incident wave 
is weakly'scattered, in which case the displacement and strain fields 
in the flaw are nearly that of the incident wave.  The far field ampli- 
tudes are given as r-**>  by 

iar ißr 
u. = [ -  A.(a,e°,eS) + -  B. (8,e°,eS)). (4) 
l    r    l r    l 

Here A^ and B^ are respectirely the scattering amplitudes for longi- 
tudinal and transverse waves and es * r7|r*|. 

The rest of our exposition will be given in terms of longitudinal 
to longitudinal (L-L) scattering, although the same results can be ob- 
tained for transverse to transverte and for mode-converted signals. 
The longitudinal scattering amplitude for an incident longitudinal 
wave in the Born approximation is 

2 2 
.     -o »sN  a r 6p   n      6X+26yco8 ft , _,  «0 «B, -     ,cx 

A,(a,e ,e  ) m TZ I cose CT^— ' S(a,e ,e ) r     (5) i An   p A+2u i 

Here S(a,e°,e8) is called the shape factor and is defined as the k- 
space Fourier transform of the characteristic function, y,   i.e. 
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-  «o «a, _ f ,3-»-,  ia(e -e )*r  .•*-,* ,,* 
S(a,e ,e ) - J d r e y(r ) (6) 

The inversion algorithm we use in this paper is based on the directly 
backscattered signal. In that case the scattering amplitude is given 
by 

2 
A /  A

O ->0v_ o , 6p , 6X+26u . .     »o  »Ov«o ,,* 
A (a,e ,-e )■ 7- ( -=■ + —r-=— ) S(a,e ,-e )e. (7) 

1 4it p    X+2u 1 

Following Rose and Krumhansl [23) vs rewrite Eq. 7 as 

-O   /   -O  «Ov e< Ma»e »"e ' 
S(3,e°,-e°) - -j-i  (8) 

a  , 6p , 6X+26u x —- ( —«=• +  ; 
4*   P    X+2p 

If the pulse-echo scattering amplitude is known for all frequencies 
and for all directions of incidence, then the shape factor S is com- 
pletely defined.  The characteristic function is obtained by an in- 
verse Fourier transform of Eq. 6.  We find 

*o.   /     *o    «o» 
, , -      ~ 0.   -o  -*• e.A.(a,e   ,-e   ) 

t-*\ \ * f  2.   .2«o —2iae   «r    i  i ,nv 
Y(r)  =7Tr6p   j   6A+26p,  J°dade    e  2  (9) 

2lT
  (p+_^2u~) 

If the scattered signal dees not depend on the incident direction 
(i.e., if the flaw has sp.ierical symmetry) Eq. 9 can be simplified and 
we obtain 

, x   2     1   f,  sin2ar -     .  -o  «o, ,,n. 
Y(r) -— -z J-—Z  Ida -r  e.  A.(a,e ,-e ). (10) n ,op  6X+6u> ' 2ar   11 

p   X+2u 

Equation (10) is the form of the inversion algorithm most commonly 
used in experimental evaluation. The determination of the character- 
istic function requires a knowledge of 6p, 6X and 6u.  If we are only 
concerned with the shape (geometric features) of the flaw it is not 
necessary to know the material property deviations since they only 
appear as an overall multiplicative factor.  In the following results 
we will replace the prefactors in Eqs. (9) and (10) by a positive con- 
stant.  Consequently, in the inversions which follow the shape of the 
flaw is determined but 6p, 6X and 6u are undetermined. 
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The two inversion formulas (Eqs. (9) and (10)) are valid in the 
weak scattering limit.  Our purpose in this paper is to test how well 
they work for strongly scattering flaws.  Because of the assumed spher- 
ical symmetry, Eq. (10) can be evaluated using only a single pulse-echo 
record (i.e., the amplitude for a single angle of incidence, but for 
all freauencies). This is an important simplification over Eq. (9) 
especially in some NDE applications where only a single angle of view- 
ing is available.  Equation (10) can also be used if multiple viewing 
angles are available to obtain a reconstruction of ellipsoidal flaws. 
This feature will be discussed in Section IV. 

Two ambiguities arise in the inversion procedure for strongly scat- 
tering flaws.  First, the shape factor is no longer uniquely and exact- 
ly related to tho scattering amplitudes.  One could, for example, ap- 
proximate S from pitch-catch experiments (where e°fea),  as well as the 
more restricted pulse-echo used in eq. (8). A report on the experimen- 
tal test of this possibility is contained in Ref. (32).  However, in 
this paper, we will rely entirely on pulse-echo data.  Our choice stems 
from the relative experimental ease of collecting these data and from 
the fact that the Born approximation for the direct scattering problem 
works best for the pulse-echo mode. 

A second ambiguity arises, since A^ (which is a real function for 
weakly scattering flaws with a center of inversion symmetry) becomes 
a complex valued function for flaws with finite scattering strength. 
Using Eqs. (9) and (10) without modification would lead to a oredicted 
complex value for the characteristic function, y(t).    This is in con- 
tradiction to our original assumptions and arises when strong scatter- 
ing data is used in the inversion.  Empirically, it has been found 
that the reconstruction of volumetric flaws is found in the real part 
of y(t), while the reconstruction of crack-likt flaws is found in the 
imaginary part of y(t).     A reconstruction of the entire flaw is obtain- 
ed by evaluating |y(f")|. 

III.  TIME DOMAIN BORN INVERSION ALGORITHM 

The time domain picture proves useful in explaining how the Born 
inversion procedure can yield accurate results for the size, shape and 
orientation of strongly scattered volume flaws.  We follow Rose and 
Richardson (26) in describing the direct and inverse scattering prob- 
lems.  We will further indicate how the algorithm can be reduced to 
a practical form for strongly scattering flaws.  Finally, we discuss 
in a schematic way the inversion procedure for a strongly scattering 
spherical void. 

The scattering geometry for the time domain is much the same as 
for the frequency domain.  An incident delta function plane wave dis- 
placement field impulse propagates in the +e° direction and is given 
by 

u°(r\t') '  «° 6(f-e°-r/c) (11) 



e 

Here c is the longitudinal velocity of sound in the host. We note 
that the impulse is chosen to cross the origin of coordinates which 
is centered in the flaw at t' ■ 0. 

The form of the scattered displacement field in the Born approxi- 
mation can be determined either by iterating a time domain integral 
equation analogous to Eq. (1) or by Fourier transforming the scatter- 
ing amplitude as given in Eq. (S) to the time domain.  The scattered 
displacement field at an observation point r' and a time t' is given 
for large |r'| as 

uS(r',t') = Lim    -— R.(e0,eS,t'-r7c) (12) 
1 in-*» lr I  l 

R, (defined by this equation) is called the impulse response function. 
It is related to the frequency domain scattering amplitude by 

«O ~S   N    1   f"o  -iwt . /   *0 «Sv  , >.,. 
R.(e ,e ,t) ■ -r- J  e    A.((u,e ,e ) doo. (13) 
1 «ill ' 1 

— ao 

Here t = t'-r'/c and u> is the angular frequency, w = ca.  Within the 
Born approximation R. is 

l 

,2    _ ,-o -s. -+, 
R.(e°,eS,t) = f(e°.eS)eS ^ / d\'y(P)   6(t - (e '* ),r  ).  (14) 

1 dt2 

The function f(e *e ) is a geometrical factor involving the material 
property deviations and is given emplicitly by 

2 

f(e°.eS) = -& cos« - AW6l'r0S 9 (15) 
p X+2M 

Here cos6 = e *e .  The integral in Eq. (14) has an interesting inter- 
pretation.  It is the cross-sectional area of the flaw intersected on 
a plane defined by t = (e0-es)«f7c.  The straightforward and intui- 
tively appealing use of Eq. (14) to determine impulse response func- 
tions is discussed for several simply shaped flaws in Ref. 26. 

In or»ier to define the inversion procedure we consider the L-L 
pulse-echo response function; R(c,°,-e°, t), for all directions of in- 
cidence e°.  Since the impulse response function defines the projec- 
tion of y(t)  onto planes, the characteristic function can be obtained 
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from Che Radon transform. A discussion of Che connection between the 
Radon transform and the inverse Born approximation is given in Refs. 
(37) and (38). The resulting inversion formula is 

/"**\ f ,2Ä0 «0_ ,»0  "O -"O -+. x /,,\ 
y(r) - const. J d e e R.(e ,-e , t * 2e T/C) (16) 

This equation can be verified directly by substituting Eq. (13) in (16), 
Equation (16) simplifies for the case of spherical symmetry and one 
obtains 

1   2r/c 

Y(r) = const.  .  . .  J    e?R.(e°,-e°,t)dt (17) 
-2r/c 

In order to illustrate the use of the time domain inversion pro- 
cedure, we consider a spherical flaw in the weak scattering limit. 
The Born approximation for the time domain impulse response is shown 
in Fig. 2A. The inversion procedure averages the impulse response 
function from -2r/c to 2r/c in order to determine the value of the 
characteristic function at point r. The result is shown in Fig. 2B. 
The characteristic function drops abruptly to zero when the average 
includes the delta functions which occur at -2a/c and 2a/c (here a is 
the radius of the sphere).  We will return shortly to a consideration 
of the inversion procedure for a strongly scattering spherical flaw. 
First, however, we must deal with the ambiguities in producing an al- 
gorithm from the formalism which were mentioned in the last section. 

In order to evaluate Eqs. (16) or (17), it is necessary to know 
the zero of time about which the average is to be performed.  This 
turns out to be one of the greatest difficulties in inverting experi- 
mental data.  Formally, the zero of time to be used by Eq. (12) is de- 
fined by t = t'-r'/c = 0. An interpretation of this definition is to 
imagine launching a spherical longitudinal wave, from ehe origin of 
coordinates at time t' ■ 0, which travels with the velocity of the 
host.  Physical events at the point of observation are then measured 
with respect to the arrival of this wave front.  However, this defi- 
nition, based on an absolute arrival time, is not directly usable ex- 
perimentally, since the distance from the center of the flaw to the 
observation point, |r'|, is not available.  For flaws with a center 
of inversion symmetry (with which we are primarily concerned) this dif- 
ficulty has an elegant solution [39].  Reverting to the frequency do- 
main for a moment, we note that for small frequencies the scattering 
amplitude can be expanded as 

2345 
A(uj) ■ a-o + ia.u) + a,w + ia^m + .... (18) 
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Fig. 2.  a) The backscattered impulse response function calculated in 
the Born approximation for scattering from a spherical flaw, 
b) The reconstructed characteristic function corresponding 
to the impulse response in Fig. (2a). 
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It has been shown by Richardson [40] that if the flaw has a center of 
inversion symmetry and if the phase shifts are calculated with respect 
to this center, then aß - 0.  That is, the imaginary part of the ampli- 
tude rises as w-> for small u.  This condition fixes the zero of time 
in the following way.  Suppose we are given an impulse response, R^, 
but with an arbitrary zero of time.  This is the common experimental 
situation.  Then we can pick some zero of time and Fourier transform 
R^ to obtain the scattering amplitude.  Only for the correctly chosen 
zero of time will the coefficient of op, aß, vanish.  If there is an 
error, At, in the choice of the zero of time then aß « a2<i>At.  For 
spherical voids of radius 'a* in SißN^ and Ti alloy, a realistic use 
of Eq. (18) to fix the zero of time requires values of the scattering 
amplitude for aa<.5.  The proper choice of the zero of time leads un- 
ambiguously to a determination of the real and imaginary parts of the 
scattering amplitude. 

For a strongly scattering spherical flaw the inversion procedure 
has some interesting features.  Figure 3A shows a schematic impulse 
response function.  The most prominent feature of the impulse response 
is a large delta-function specular reflection occurring at time t ■ 
-2a/c.  The much smaller later arriving signal is the result of the 
creep waves which propagate around the 'dark' side of the sphere.  When 
Eq. (17) is used to invert an impulse response function of this form, 
the characteristic function, shown schematically in Fig. 3B, is found. 
The most st iking feature of this characteristic function is the large 
discontinuity in y  which occurs at the actual radius and this allows 
an exact determination of the flaw's size.  Rose and Opsal [27] have 
used the general time domain results to show that the size, shape and 
orientation of a convex void can be determined exactly from the inverse 
Born approximation given exact L-L backscattered data for all time and 
all direction of incidence.  The empirical results to be discussed in 
the rest of the paper completely support these conclusions. 

IV.  ONE DIMENSIONAL BORN INVERSION 

A.  Theoretical Results 

In this section we will test the ability of the algorithm to 
size spherical flaws in an isotropic and otherwise homogeneous elastic 
medium.  The elastic wave equation is separable in spherical geometries. 
Consequently, a series solution can be obtained for the scattering am- 
plitude of a homogeneous spherical flaw.  This -eries solution, first 
introduced by Ying and Truell [41], was used tr determine the scat- 
tering for two sets of flaws [42].  First the backscattered amplitude 
was determined for spherical voids of radius a in various materials. 
Equation (10) was used to evaluate the characteristic functions which 
are plotted in Fig. (4).  We note that in all cases, the characteristic 
function is large inside the nominal radius of the flaw and drops 
abruptly to zero at the correct radius.  The numerical data was calcu- 
lated .Kaa<10, where a is the nominal radius of the flaw, ir steps 
of 0.1.  The cutoff in data at aa=10 leads to the rounding of the 
characteristic function near the nominal radius and to the oscillations 
ir. the reconstruction (Gibb's phenomena). 
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Fig. 3.  a) Schematic representation of the true impulse backscattered 
response function for a spherical void in a metal,  b) A sche- 
matic characteristic function corresponding to the impulse 
response in Fig. (3a). 
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Fig. A.  Calculated characteristic functions, using Eq. (10) with back- 
scattered longitudinal waves, .10<aa<10, for spherical voids 
in various solids Ti and Al   _, Brass..., Tungsten carbide 
- • - and Pb --. 
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Fig. 5.  Calculated characteristic functions, using Eq. (10) with back- 

scattered longitudinal waves, .10<aa<10, for spherical inclu- 
sions:  silicon inclusion in silicon nitride, Si:Si3N4  ; 
Fe:Si3N4  ; W:Si3N4   and a tungsten carbide inclusion 
in titanium  _.  The first part of the characteristic function 
(R-»0) is positive if the impedance of the flaw is less than 
that of the host. 
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Scattering amplitudes were also calculated for a series of inclu- 
sions in SißN^. Results are shown in Fig. (5). These results are 
quite different from those obtained for voids. First of all, the esti- 
mated characteristic function is, in most cases, negative.  This re- 
sults since the acoustic impedance of the flaw is greater than that 
of the host. Upright characteristic functions are obtained when the 
acoustic impedance is less than the host (see the comment following 
Eq. (10)). All of the reconstructed characteristic functions drop 
abruptly to zero at the nominal radius.  However, spurious features 
may occur at larger values of r.  See, for example, the result of the 
iron (Fe) inclusion.  These spurious features result from multiple 
scattering of the incident beam within the inclusion. They present 
a significant difficulty when present (although see Hsu et al. (32)). 
Fortunately, the occurrence of such substantial effects is unusual for 
many of the realistic inclusions found in metals. 

B.  Experimental Results 

The experimental validation of the "one-dimensional" form of 
the IBA has been carried out by several groups [31,32].  Figure (6) 
shows the reconstructed characteristic function for a AOOym radius 
spherical void in a diffusion bonded titanium sample (A3]. The data 
was taken by R. K. Elsley for backscatter and 0.5<aa<A.0, where a is 
the radius of the flaw.  The inferred characteristic function, y, *s 

rounded due to the lack of high frequencies.  Even so, a relatively 
accurate estimate is obtained for the radius by finding the value of 
r for which y is half of its maximum value.  These results are typical. 
The estimated radius agrees with the nominal radius of the flaw to 
within 10%. 

1.0 

Y(r) 

0.5 

;           \ 

200 400 

Fig.   6.     Reconstructed  characteristic   function   for  a 400um  spherical 
void   in  a   titanium  sample.     The   backscattered   longitudinal 
to   longitudinal   signal  was  measured   for   .50<aa<A.O  and  used 
to obtain y(?) via Ecl-   (10). 
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Perhaps the most systematic examination of the experimental in- 
version of spherical flaws was carried nut by Elsley and Addison (31]. 
They measured scattering amplitudes for a wide variety of spherically 
symmetric flaws both in titanium and in Si3N4. Their results are re- 
ported in Table 1.  As can be seen, good reconstructions were obtained 
if the scattering amplitude was experimentally accessible for .5<aa<2.5. 
They further verified this observation by considering exact solutions 
from the Ying-Truell solutions for a spherical void in titanium and 
truncating both the minimum and maximum values of ca included in the 
inversion algorithm. The inversion remains relatively accurate as high 
frequencies are removed as long as oamax>2.  For aamax<2, the method 
becomes diffraction limited and overestimates the size of the flaw. 
As low frequencies are removed, the method tends to systematically un- 
derestimate the size of the flaw. 

More recently, Hsu et al. have investigated the use of the one- 
dimensional algorithms in a variety of circumstances.  It WAS shown 
to be useful for flaws near a wate.-solid interface |44], for certain 
flaws with large resonant scattering amplitudes and for pitch-catch 
(bistatic) measurements. 

It was suggested in Ref. (45) that the "one-dimensional" IBA could 
be used to determine the shape of an ellipsoidal flaw if backscattered 
data were available for several directions of incidence. Hsu et al. 
[44] implemented this idea and accurately determined the size, shape 
and orientation of spheroidal voids and inclusions in elastic materials. 

V.  "THREE-DIMENSIONAL" BORN INVERSION 

A.  Theoretical Results 

Ihe calculation of elastic wave scattering amplitudes for iso- 
lated, non-spherically symmetric flaws is rather difficult.  Most 
methods obtain a solution by expanding the field, u^(?,w), in terms 
of a basis set.  In one method the boundary conditions are satisfied 
variationally [15,16].  The result is a matrix equation for the expan- 
sion coefficient which when solved numerically determines the scattered 
field.  With the largest computers, most solutions have been restricted 
to axially symmetric flaws since this substantially simplifies the so- 
lution of the matrix equation. 

Rose and Opsal [33] have reported the inversion of several of 
these numerically "exact" scattering amplitudes for a variety of axi- 
ally symmetric voids and cracks.  The backscattered amplitudes were 
calculated, using the method of optimal truncation [19], for 0.1<aa<10 
and for five decree increments of the polar angle.  The characteristic 
function was evaluated using Eq. (9).  Since the flaw is assumed to 
be axially symmetric the integration over the azimuthal angle was car- 
ried out analytically. 

Figure 7(a) shows the reconstruction of an edge-on penny shaped 
crack.  The solid line shows the boundary of the crack.  The dashed 
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Table 1.  From Ref. (31). Shows estimated radii of various flaws in 
a titanium alloy (Ti-6Al-4V) and in a ceramic material (Si3 
N4). The first column defines the flaw, the second coli-mn 
gives .' measure of signal-to-noise while the third and fourth 
columns define the smallest and largest values of aa for the 
measured signal.  Columns five and six contain the true and 
estimated radii, respectively. 

Flaws in Ti-6Al -4V 
True "stimat« d 

Flaw S/N(dB) aa . 
mm 

aa 
max Radius 

(um) 
Radius 
(pin) 

Comments 

1. Void Sphere 10 .2 3 400 388 

398±4 
402±4 

0° 
Incidence 

2. Void Prolate 415 x -10 .5 2.5 415 443 
806pm 

3. Void Sphere 20 .5 3 400 374 
4. WC Sphere 10 .5 3 400 325 
5. Void Sphere -13 .6 2.5 400 347 
6. Void Sphere 10 1.2 4.2 600 361 No low ka 
7. Void Oblate )90 x -10 .6 1.1 225 330 No high ka 

130um 

Flaws in Si.N. 
3 4 

1. Fe Sphere 25 .5 4 200 190 
2. Si "Sphere" 10 .5 3 "50" 38 Highly 

Distorted 
3. Void "Sphere" 10 1.0 5.5 250 180 No low ka 
4. Void "Sphere" 0 .5 2.8 125 132 

line is the 507. equal value contour of the characteristic function. 
Figures (7b-d) show similar results for:  (7b) a spherical void inter- 
sected by a flat circumferential crack; (7c) a spherical void with a 
second spherical void half its radius appended; and (7d) a spherical 
void with an attached capped cylindrical void (the 40, 50 and 607. con- 
tours are shown).  In all cases, the algorithm was successful in recon- 
structing the flaws.  Thus it wa shown that the method (1) can be 
applied to cracks (2) can deal with flaws with hollows and (3) can deal 
with sharp corners in the shape of the flaw.  Peihaps the inversion 
of the composite flaw (void and crack) in Fig. 7b is the most important 
result, since this shows that the same algorithm can be used to treat 
both types of defects. 
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Fig. 7.  Reconstructions of various flaws using the "three-dimensional" 
Born inversion algorithm defined by Eq. (9).  All the flaws 
are axially symmetric and L-L backscattered amplitude were 
calculated for .10<aa<10 and for five degree increments of 
the polar angle.  The solid lines show the nominal shape of 
the flaw while the   line shows the 50% equal value contour 
of the characteristic function y(r).  (7a) Reconstructed char- 
acteristic function for a penny-shaped crack lying edge-on, 
(7b) Reconstructed characteristic function for a spherical 
void with a circumferential flat crack lying edge-on, (7c) 
Reconstructed characteristic function for a flaw consisting 
of a spherical void with a smaller spherical void appended. 
Here we show the 40, SO and 607. equal value contours.  (7d) 
Reconstructed characteristic function for a spherical void 
with a capped cylinder appended. 
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Recently the Inversion of the "Saturn ring" flaw has been repeated. 
Figure 8a shows a plot of the real part of the characteristic function, 
while Fig. 8b show3 the imaginary part.  Finally, Fig. 8c shows the 
magnitude. The values plotted represent the 70% contour of y(t).     As 
can be seen, it is possible in this way to cleanly separate the volu- 
metric from the crack-like portions of the flaw.  The ability to dis- 
tinguish cracks from voids and inclusions is important  The presence 
of a crack in a part is likely to be dangerous while, for example, some 
inclusions are entirely benign. 

B.  Experimental Results 

Experimental tests of the "three-dimensional" form of the IBA 
(Eq. (9)) are quite recent and generally unpublished.  Elsley (46] has 
presented preliminary results for the reconstruction of y(r)   for a 200- 
AOOuoi oblige spheroid.  He found that the algorithm accurately deter- 
mined the size of the flaw.  However, the shape of the flaw was dis- 
torted, apparently due to certain artifacts in the integration scheme. 
Later Rose [47) et al. inverted the same data for the oblate spheroid 
and similar data for a 200-AOOpm "Saturn ring" flaw.  The sizes and 
shapes of these flaws were accurately reproduced including the cracked 
region of the "Saturn ring" flaw.  Full deUils will be published elsewhere 

VI.  DISCUSSION 

The inverse Born approximation has been shown to be an appropriate 
means of characterizing certain isolated flaws in metals and ceramics. 
In particular, it is possible to determine the size, shape and orien- 
tation of the flaw given adequate experimental data.  The primary ex- 
perimental concern is to measure the backscattered amplitude for a suf- 
ficiently broad bandwidth and over a sufficiently wide apreture.  The 
method appears tc work equally well for volumetric flaws (voids and 
inclusions) and for cracks.  Further, the examination of the real and 
imaginary parts of the characteristic function provides a method for 
distinguishing voids and cracks, even when they are part of the same 
flaw. 

The agreement between theory and experiment are surprising given 
the bases of the theory.  However, as we remarked in the introduction 
the same algorithm can be derived on other grounds in the high fre- 
quency limit for voids (20).  Additionally, the inversion algorithm 
is very similar to that used in acoustic backscatter tomography.  The 
fact that these diverse "single-scattering" approaches yielded the 
same m„thod supports the wide range of validity found empirically. 
References (27) and (30) discuss in some further detail the reasons 
for the IBA's success and its connection to the synthetic aperture 
imaging method. 

In this paper the determination of the flaw's geometric features 
were discussed.  The material properties of the flaw were ignored. 
This arises in large part from the fact that only recently have 
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Fig. 8.  Reconstructed characteristic function y^1")» f°r a "Saturn 
ring" flaw.  (8a) real part of reconstructed characteristic 
function. (8b) Imaginary part of reconstructed characteristic 
function. (8c) Magnitude of reconstructed characteristic 
function. 
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absolute (as opposed Co relative) measurements of the scattering am- 
plitude become routinely available.  A considerable amount of future 
work involves using these absolute measured amplitudes to 1) develop 
corrections to the IBA's predictions of the geometric shape and 2) to 
predict the material properties of the flaw. 

In summary, the inverse Born approximation has been shown to be 
a simple and direct way of inverting ultrasonic scattering amplitudes 
to find the geometric features of isolated flaws in the bulk of a 
structural material. 
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